Publications by authors named "Yu-Hang Yan"

COP9 signalosome catalytic subunit CSN5 plays a key role in tumorigenesis and tumor immunity, showing potential as an anticancer target. Currently, only a few CSN5 inhibitors have been reported, at least partially, due to the challenges in establishing assays for CSN5 deubiquitinase activity. Here, we present the establishment and validation of a simple and reliable non-catalytic activity assay platform for identifying CSN5 inhibitors utilizing a new fluorescent probe, , that exhibits enhanced fluorescence and fluorescence polarization features upon binding to CSN5.

View Article and Find Full Text PDF

Metallo-β-lactamases (MBLs) are zinc-dependent enzymes capable of hydrolyzing all bicyclic β-lactam antibiotics, posing a great threat to public health. However, there are currently no clinically approved MBL inhibitors. Despite variations in their active sites, MBLs share a common catalytic mechanism with carbapenems, forming similar reaction species and hydrolysates.

View Article and Find Full Text PDF

The emergence of metallo-β-lactamases (MBLs) confers resistance to nearly all the β-lactam antibiotics, including carbapenems. Currently, there is a lack of clinically useful MBL inhibitors, making it crucial to discover new inhibitor chemotypes that can potently target multiple clinically relevant MBLs. Herein we report a strategy that utilizes a metal binding pharmacophore (MBP) click approach to identify new broad-spectrum MBL inhibitors.

View Article and Find Full Text PDF

SIRT5 has been implicated in various physiological processes and human diseases, including cancer. Development of new highly potent, selective SIRT5 inhibitors is still needed to investigate disease-related mechanisms and therapeutic potentials. We here report new ε-N-thioglutaryllysine derivatives, which were designed according to SIRT5-catalysed deacylation reactions.

View Article and Find Full Text PDF

Resistance to β-lactam antibiotics is rapidly growing, substantially due to the spread of serine-β-lactamases (SBLs) and metallo-β-lactamases (MBLs), which efficiently catalyse β-lactam hydrolysis. Combinations of a β-lactam antibiotic with an SBL inhibitor have been clinically successful; however, no MBL inhibitors have been developed for clinical use. MBLs are a worrying resistance vector because they catalyse hydrolysis of all β-lactam antibiotic classes, except the monobactams, and they are being disseminated across many bacterial species worldwide.

View Article and Find Full Text PDF

As one of important mechanisms to β-lactam antimicrobial resistance, metallo-β-lactamases (MBLs) have been receiving increasing worldwide attentions. Ambler subclass B1 MBLs are most clinically relevant, because they can hydrolyze almost all β-lactams with the exception of monobactams. However, it is still lacking of clinically useful drugs to combat MBL-medicated resistance.

View Article and Find Full Text PDF

In this study, we employed Q Exactive to determine the main differential metabolites of Magnoliae Officinalis Cortex du-ring the "sweating" process. Further, we quantified the color parameters and determined the activities of polyphenol oxidase(PPO), peroxidase(POD), and tyrosinase of Magnoliae Officinalis Cortex during the "sweating" process. Gray correlation analysis was performed for the color, chemical composition, and enzyme activity to reveal the effect of enzymatic reaction on the color of Magnoliae Officinalis Cortex during the "sweating" process.

View Article and Find Full Text PDF

Production of metallo-β-lactamases (MBLs) in bacterial pathogens is an important cause of resistance to the 'last-resort' carbapenem antibiotics. Development of effective MBL inhibitors to reverse carbapenem resistance in Gram-negative bacteria is still needed. We herein report X-ray structure-guided optimization of 1H-imidazole-2-carboxylic acid (ICA) derivatives by considering how to engage with the active-site flexible loops and improve penetration into Gram-negative bacteria.

View Article and Find Full Text PDF

Human sirtuin 5 (SIRT5) plays pivotal roles in metabolic pathways and other biological processes, and is involved in several human diseases including cancer. Development of new potent and selective SIRT5 inhibitors is currently desirable to provide potential therapeutics for related diseases. Herein, we report a series of new 3-thioureidopropanoic acid derivatives, which were designed to mimic the binding features of SIRT5 glutaryl-lysine substrates.

View Article and Find Full Text PDF

Protein kinases are central mediators of signal-transduction cascades and attractive drug targets for therapeutic intervention. Since kinases are structurally and mechanistically related to each other, kinase inhibitor selectivity is often investigated by kinase profiling and considered as an important index for drug discovery. We here describe a versatile web server termed ProfKin for structure-based kinase profiling, which is based on a kinase-ligand focused database (KinLigDB).

View Article and Find Full Text PDF

Chiral 3-substituted benzoxaboroles were designed as carbapenemase inhibitors and efficiently synthesised via asymmetric Morita-Baylis-Hillman reaction. Some of the benzoxaboroles were potent inhibitors of clinically relevant carbapenemases and restored the activity of meropenem in bacteria harbouring these enzymes. Crystallographic analyses validate the proposed mechanism of binding to carbapenemases, i.

View Article and Find Full Text PDF

The production of β-lactamases represents the main cause of resistance to clinically important β-lactam antibiotics. Boron containing compounds have been demonstrated as promising broad-spectrum β-lactamase inhibitors to combat β-lactam resistance. Here we report a series of 3-aryl substituted benzoxaborole derivatives, which manifested broad-spectrum inhibition to representative serine-β-lactamases (SBLs) and metallo-β-lactamases (MBLs).

View Article and Find Full Text PDF

This paper aimed to investigate the active components and mechanism of Taohong Siwu Decoction in the treatment of primary dysmenorrhea(PD) based on network pharmacology and molecular docking technology. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) was used to search the chemical compositions and targets of six herbs in Taohong Siwu Decoction. The targets for PD treatment were selected through the databases of DrugBank, OMIM, TTD and CTD, and gene annotation of the targets was conducted with UniProt database.

View Article and Find Full Text PDF

Magnolia officinalis is a traditional Chinese medicine,with many years of cultivating process, M. officinalis leaves show more differentiation types due to the exchange of seeds from different provenances. "Da Ao"(DA), "Xiao Ao"(XA), "Chuan Hou"(CH),and "Liu Ye"(LY)are the main types of M.

View Article and Find Full Text PDF

β-Lactam antibiotic resistance mediated by metallo-β-lactamases (MBL) has threatened global public health. There are currently no available inhibitors of MBLs for clinical use. We previously reported the ruthenium-catalyzed meta-selective C-H nitration synthesis method, leading to some -mercaptopropanamide substituted aryl tetrazoles as new potent MBL inhibitors.

View Article and Find Full Text PDF

Sirtuins (SIRTs) are NAD-dependent lysine deacylases, regulating many important biological processes such as metabolism and stress responses. SIRT inhibitors may provide potential benefits against SIRT-driven human diseases. Development of efficient assay platforms based on fluorogenic substrates will facilitate the discovery of high-quality SIRT inhibitors.

View Article and Find Full Text PDF

Resistance to β-lactam antibacterials is commonly associated with the production of the serine β-lactamases (SBLs) and/or metallo-β-lactamases (MBLs). Although clinically useful inhibitors for the SBLs have been developed, no equivalent inhibitors are available for the MBLs, which can hydrolyze almost all β-lactam antibiotics, including the so-called "last resort" carbapenems. It is still a challenging task to develop a clinically useful inhibitor that should be broad-spectrum targeting multiple clinically relevant MBL enzymes that differ in their active site features.

View Article and Find Full Text PDF

Motivation: Metalloenzymes are attractive targets for therapeutic intervention owing to their central roles in various biological processes and pathological situations. The fast-growing body of structural data on metalloenzyme-ligand interactions is facilitating efficient drug discovery targeting metalloenzymes. However, there remains a shortage of specific databases that can provide centralized, interconnected information exclusive to metalloenzyme-ligand associations.

View Article and Find Full Text PDF

The emergence and spread of bacterial pathogens acquired metallo-β-lactamase (MBL) and serine-β-lactamase (SBL) medicated β-lactam resistance gives rise to an urgent need for the development of new dual-action MBL/SBL inhibitors. Application of a pharmacophore fusion strategy led to the identification of (2')-(1-(3'-mercapto-2'-methylpropanamido)methyl)boronic acid () as a new dual-action inhibitor, which manifests broad-spectrum inhibition to representative MBL/SBL enzymes, including the widespread VIM-2 and KPC-2. Guided by the VIM-2: and KPC-2: complex structures, further structural optimization yielded new, more potent dual-action inhibitors.

View Article and Find Full Text PDF

A high-quality X-ray crystal structure reveals the mechanism of compound inhibiting SIRT2 deacetylase and decanoylase. Structure-activity relationship (SAR) analysis of the synthesized derivatives of reveals the high requirements needed for selective inhibitors to bind with the induced hydrophobic pocket and potently inhibit sirtuin 2 deacetylase.

View Article and Find Full Text PDF

The impact of global warming on the growth and development of natural vegetation is an important concern worldwide. Based on the data from the vegetation normalization index, daytime temperature (T), nighttime temperature (T), precipitation, and elevation from 1982 to 2015, we examined the day-night warming response of 42 types of natural vegetation in China. The results showed that both the temperature at day and night was significantly increased in the study area, with obvious asymmetry.

View Article and Find Full Text PDF

In order to monitor heavy metal pollution in agricultural soils and assess the corresponding health risk in the Yellow River irrigation area, this study applied the Nemero index and the health risk index to evaluate heavy metal pollution in wheat grains and the health risks for residents in the lower reaches of the Yellow River. Four towns in Kaifeng, which are within the lower reaches of the Yellow River, were selected as the study area. The examination of wheat samples revealed that the average contents of Cd, Cr, Pb, Cu, Zn, Ni, and Hg in the wheat grains were 0.

View Article and Find Full Text PDF

Human sirtuin 2 (SIRT2) is a nicotinamide adenine dinucleotide (NAD)-dependent deacylase, and is implicated in human diseases including cancer. Selective small-molecule inhibitors for SIRT2 are sought as chemical tools and potential therapeutics. Here we report the X-ray crystal structure guided structure-activity relationship studies of new N-(3-(phenoxymethyl)phenyl)acetamide derivatives with SIRT2, which led to the identification of potent, selective SIRT2 inhibitors.

View Article and Find Full Text PDF