Enzymatically modified isoquercitrin (EMIQ) is a glyco-chemically modified flavonoid exhibiting notably high biological activity, such as antioxidant, anti-inflammatory and anti-allergic properties. However, the utilization of expensive substrates such as isoquercitrin and cyclodextrin in the conventional approach has hindered the industrial-scale production of EMIQ due to high cost and low yields. Hence, the development of a cost-effective and efficient method is crucial for the biological synthesis of EMIQ.
View Article and Find Full Text PDFThe biofilm of an engineered strain is limited by slow growth and low yield, resulting in an unsatisfactory ability to resist external stress and promote catalytic efficiency. Here, biofilms used as robust living catalysts were manipulated through dual functionalized gene regulation and carrier modification strategies. The results showed that gene overexpression regulates the autoinducer-2 activity, extracellular polymeric substance content and colony behavior of Escherichia coli, and the biofilm yield of csgD overexpressed strains increased by 79.
View Article and Find Full Text PDFBackground: With the requirements of environmental, cost and economic sustainability, new sources of alternative proteins in the livestock industry are receiving increasing attention. Mulberry (Morus alba L.) leaves are a unique feed resource because of their high protein content and large availability.
View Article and Find Full Text PDFThe high cell density, immobilization and stability of biofilms are ideal characteristics for bacteria in resisting antibiotic therapy. CsgD is a transcription activating factor that regulates the synthesis of curly fimbriae and cellulose in , thereby enhancing bacterial adhesion and promoting biofilm formation. To investigate the role of CsgD in biofilm formation and stress resistance in bacteria, the D deletion mutant ΔD was successfully constructed from the engineered strain BL21(DE3) using the CRISPR/Cas9 gene-editing system.
View Article and Find Full Text PDFBackground: The antioxidant properties of active peptides from silkworm pupae protein hydrolysate are of interest, and it serves as a novel source of calcium supplement.
Methods: Optimize the preparation parameters of silkworm pupae bioactive peptide-calcium chelate, and investigate the mechanism and bioavailability of silkworm pupae active peptide as a transport carrier to promote calcium ion absorption using simulated gastrointestinal digestion and Caco-2 monolayer cell model.
Results: The optimal process parameters for preparing peptide calcium chelate were the peptide calcium mass ratio of 3:1, pH of 6.
Boron is an essential element for autoinducer-2 (AI-2) synthesis of quorum sensing (QS) system, which affects bacterial collective behavior. As a living biocatalyst, biofilms can stably catalyze the activity of intracellular enzymes. However, it is unclear how boron affects biofilm formation in E.
View Article and Find Full Text PDF