Banded spherulites are formed by crystallization of a chiral polymer that is end-capped with chromophore. Induced circular dichroism (ICD) of the chromophore can be found in the crystallized chiral polymers, giving exclusive optical response of the ICD. The ICD signals are presumed to be driven by the lamellar twisting in the crystalline spherulites, and the exclusive optical activity is attributed to the chirality transfer from molecular level to macroscopic level.
View Article and Find Full Text PDFHere, we report the mechanisms of chiral transfer at various length scales in the self-assembly of enantiomeric chiral block copolymers (BCPs*). We show the evolution of homochirality from molecular chirality into phase chirality in the self-assembly of the BCPs*. The chirality of the molecule in the BCP* is identified from circular dichroism (CD) spectra, while the handedness of the helical conformation in the BCP* is determined from a split-type Cotton effect in vibrational circular dichroism spectra.
View Article and Find Full Text PDFA molecularly imprinted film was fabricated, in the presence of epitope-peptides, onto a quartz crystal microbalance (QCM) chip. These five peptides are known linear or conformational epitopes of the anthrax protective antigen PA(83). Imprinting resulted in an epitope-cavity with affinity for the corresponding template.
View Article and Find Full Text PDFThe development of blended biomacromolecule and polyester scaffolds can potentially be used in many tissue engineering applications. This study was to develop a poly(gamma-glutamic acid)-graft-chondroitin sulfate-blend-poly(epsilon-caprolactone) (gamma-PGA-g-CS/PCL) composite biomaterial as a scaffold for cartilage tissue engineering. Chondroitin sulfate (CS) was grafted to gamma-PGA, forming a gamma-PGA-g-CS copolymer with 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide (EDC) system.
View Article and Find Full Text PDFThis study investigates a poly(epsilon-caprolactone)-graft-type II collagen-graft-chondroitin sulfate (PCL-g-COL-g-CS) biomaterial as a scaffold for cartilage tissue engineering. Biodegradable polyester, PCL, was utilized to fabricate three-dimensional (3D) porous scaffolds by particulate leaching. The PCL scaffold was then surface modified by chemical bonding of 1,6-hexanediamine and the grafting of a bioactive polymer layer of COL and CS with the help of 1-ethyl-3-(3-dimethyl- aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) on the modified PCL surface to produce PCL-g-COL and PCL-g-COL-g-CS, respectively.
View Article and Find Full Text PDFA novel 5'-deoxy-5-fluorouridine-poly(epsilon-caprolactone) (5'-DFUR-PCL) polymer was synthesized from the antitumor agent doxifluridine (5'-DFUR) by the ring-opening polymerization of epsilon-caprolactone (epsilon-CL) using Sn(II) 2-ethylhexanoate (Sn(Oct)2) as the catalyst. The structure and molecular weight of these polymers were further elucidated by proton nuclear magnetic resonance and gel-permeation chromatography. The results revealed that the molecular weights of the 5'-DFUR-PCL polymers were close to the theoretical values calculated from the epsilon-CL to 5'-DFUR molar ratios and their recovery yields were as high as 90%.
View Article and Find Full Text PDFA novel multi-array sensor using molecularly imprinted photoresists (MIPhs) as the recognition element has been fabricated with good resolution, stability and selectivity. The versatility of MIPhs in patterning electrodes with desirable configurations has been demonstrated in our lab previously. Herein, the conventional three-electrode cell was miniaturized within a confined space by taking advantage of photolithography.
View Article and Find Full Text PDFThe manufacture of stable paclitaxel-loaded poly(n-butyl cyanoacrylate) (PBCA) nanoparticles containing high loading and encapsulation efficiency simultaneously were achieved in the presence of pluronic F127 via miniemulsion. It was found that both drug loading and encapsulation efficiencies of PBCA nanoparticles prepared by miniemulsion were higher (approximately three times) than those obtained by emulsion with similar paclitaxel content in the feed monomer (1%, w/w). Furthermore, the loading and encapsulation efficiencies increased concurrently (to a maximum of 4 and 80%, respectively) with increasing paclitaxel content and these nanoparticles were spherical in shape and with size near 100 nm.
View Article and Find Full Text PDFA series of poly(lactide-co-glycolide) (PLGA)/ hyaluronic acid (HA) blend with different HA composition were used to fabricate scaffolds successfully. The pores of the three dimensional scaffold were prepared by particle leaching and freeze drying. The pore size was about 50-200 microm and the porosity was about 85%.
View Article and Find Full Text PDFCore-shell type of nanoparticles (NPs) with manipulated degradation rate and balanced hydrophilic/hydrophobic properties were designed and characterized. The NPs based on the copolymers of n-butyl cyanoacrylate (BCA) and 2-octyl cyanoacrylate (OCA) were prepared by anion emulsion polymerization in 0.01N HCl solution with pluronic F127 as the stabilizer.
View Article and Find Full Text PDFIn this investigation, new biodegradable brush-like amphiphilic copolymers were synthesized by ring opening polymerization. Poly(L-lactide) (PLLA) was grafted onto chondroitin sulfate (CS), which is one of the physiologically significant specific glycosaminoglycans (GAGs), using a tin octanoate [Sn(Oct)2] catalyst in DMSO. The hydroxyl groups of the chondroitin sulfate were used as initiating groups.
View Article and Find Full Text PDFA novel biodegradable graft copolymer chondroitin sulfate-grafted poly(L-lactide) (CS-PLLA) was synthesized. The graft copolymer was blended with PLLA to form biomimetic porous scaffolds. Natural CS was introduced into the polyester matrix to promote the proliferation of cells.
View Article and Find Full Text PDFNovel polymeric amphiphilic copolymers were synthesized using chondroitin sulfate (CS) as a hydrophilic segment and poly(L-lactide) (PLLA) as a hydrophobic segment. Micelles of those copolymers were formed in an aqueous phase and were characterized by 1H NMR spectra, fluorescence techniques, dynamic light scattering (DLS), atomic force microscopy (AFM), and confocal microscopy. Their critical aggregation concentrations (CAC) are in the range of 0.
View Article and Find Full Text PDFThe Photoluminescence of quantum dots have been found to be a useful tool for the detection of small to medium sized analyte molecules in a host-guest environment. By the incorporation of quantum dots into molecularly imprinted polymers, which can offer shape and selectivity, the former can respond by quenching the photoluminescence emission upon template binding. In this work host polymers were synthesized and cased into thin films using functional monomers such as methacrylic acid (MAA), CdSe/ZnS core-shell derivatized with 4-vinyl pyridine and ethylene glycol dimethacrylic acid (EGDMA) as a cross-linker.
View Article and Find Full Text PDFA voltammetric sensor for albuterol was investigated where we combined the techniques of microfabrication and molecular imprinting to construct on-chip devices using photoirradiation of cross-linkable polymers. Molecularly imprinted polymer was coated as a thin film onto the gold working electrode on chip and the analyte was directly quantified by differential pulse voltammetric measurements.
View Article and Find Full Text PDFIncorporation of semiconductor nanoparticles into molecularly imprinted polymer provides a sensor material which can be easily shaped and with better selectivity because the bound template would quench the photoluminescence (PL) emission of quantum dots significantly. In this work, artificial receptors of various templates were synthesized with functional monomers such as methacrylic acid (MAA), semiconductor like CdSe/ZnS core-shell derivatized with 4-vinylpyridine and ethylene glycol dimethacrylic acid as the cross-linker. The quenching of photoluminescence emissions is presumably due to the fluorescence resonance energy transfer between quantum dots and template molecules.
View Article and Find Full Text PDF