We present new models utilizing QCD-like dark sectors to resolve small-scale structure problems. These models of resonant self-interacting dark matter in a dark sector with QCD are based on analogies to the meson spectra in standard model QCD. We introduce a simple model that realizes resonant self-interaction (analogous to the ϕ-K-K system) and thermal freeze-out, in which dark mesons are made of two light quarks.
View Article and Find Full Text PDFWe study hidden-sector particles at past (CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration and NuCal), present (NA62, SeaQuest, and DarkQuest), and future (LongQuest) experiments at the high-energy intensity frontier. We focus on exploring the minimal vector portal and the next-to-minimal models in which the productions and decays are decoupled. These next-to-minimal models have mostly been devised to explain experimental anomalies while avoiding existing constraints.
View Article and Find Full Text PDFHeavy neutrinos with additional interactions have recently been proposed as an explanation to the MiniBooNE excess. These scenarios often rely on marginally boosted particles to explain the excess angular spectrum, thus predicting large rates at higher-energy neutrino-electron scattering experiments. We place new constraints on this class of models based on neutrino-electron scattering sideband measurements performed at MINERνA and CHARM-II.
View Article and Find Full Text PDFWe set constraints and future sensitivity projections on millicharged particles (MCPs) based on electron scattering data in numerous neutrino experiments, starting with MiniBooNE and the Liquid Scintillator Neutrino Detector (LSND). Both experiments are found to provide new (and leading) constraints in certain MCP mass windows: 5-35 MeV for LSND and 100-180 MeV for MiniBooNE. Furthermore, we provide projections for the ongoing Fermilab SBN program, the Deep Underground Neutrino Experiment (DUNE), and the proposed Search for Hidden Particles (SHIP) experiment.
View Article and Find Full Text PDFWe present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1 fb range.
View Article and Find Full Text PDFFrom ultracold atoms to quantum chromodynamics, reliable ab initio studies of strongly interacting fermions require numerical methods, typically in some form of quantum Monte Carlo calculation. Unfortunately, (non)relativistic systems at finite density (spin polarization) generally have a sign problem, such that those ab initio calculations are impractical. It is well-known, however, that in the relativistic case imaginary chemical potentials solve this problem, assuming the data can be analytically continued to the real axis.
View Article and Find Full Text PDF