Publications by authors named "Yu-Chih Tseng"

Effects of thermal cycling on the microstructure and thermoelectric properties are studied for the undoped and Na-doped SnSe samples using X-ray computed tomography and property measurements. It is observed that thermal cycling causes significant cracks to develop, which decrease both the electrical and lattice thermal conductivities but do not affect the thermopower. The values are drastically reduced after the repeated heat treatment.

View Article and Find Full Text PDF

Recently, thermoelectric (TE) materials have been attracting great attention due to their improved capability to convert heat directly into electricity. PbTe-based TE materials are among the most competitive ones; however, lead toxicity limits their potential applications. Thus, the current focus in the field is on the discovery of lead-free analogues.

View Article and Find Full Text PDF

Quantum memories, for storing then retrieving photonic quantum states on demand, are crucial components for scalable quantum technologies. Spontaneous parametric downconversion (SPDC) with a nonlinear crystal is the most widely used process for generating entangled photon pairs or heralded single photons. Despite the desirability of efficient quantum memories for SPDC-generated single photons, the storage and retrieval efficiencies achieved with this approach still fall below 50%, a threshold value for practical applications.

View Article and Find Full Text PDF

The current work provides a comparative study of the thermoelectric properties of the SnGeTe phases doped with Sb and Bi and alloyed with CuTe. The SnGeTe composition was chosen based on the fact that it delivers the highest ZT value within the SnGeTe series (x≤ 0.5).

View Article and Find Full Text PDF

There are broad interests in selective and localized synthesis in nanodomains of self-assembled block copolymers (BCPs) for a variety of applications. Sequential infiltration synthesis (SIS) shows promise to selectively grow a controllable amount of materials in one type of nanodomain of a self-assembled BCP film. However, the effects of nanostructured domains in a BCP film and SIS cycles on the material growth behavior of SIS are rarely studied.

View Article and Find Full Text PDF

Sequential infiltration synthesis (SIS) is a process derived from ALD in which a polymer is infused with inorganic material using sequential, self-limiting exposures to gaseous precursors. SIS can be used in lithography to harden polymer resists rendering them more robust towards subsequent etching, and this permits deeper and higher-resolution patterning of substrates such as silicon. Herein we describe recent investigations of a model system: AlO SIS using trimethyl aluminum (TMA) and HO within the diblock copolymer, poly(styrene-block-methyl methacrylate) (PS-b-PMMA).

View Article and Find Full Text PDF

Syntheses of europium metal, selenium powder, and the Sb(2)Se(3)/Bi(2)Se(3) binaries were observed to produce crystal clusters of the EuSbSe(3) and EuBiSe(3) phases. These phases crystallize with the P2(1)2(1)2(1) space group and can be easily identified based on their growth habits, forming large clusters of needles. Previous literature suggested that their structure is charge-balanced with all europium atoms in the divalent state and one-quarter of the selenium atoms forming trimers.

View Article and Find Full Text PDF

Sequential infiltration synthesis (SIS), combining stepwise molecular assembly reactions with self-assembled block copolymer (BCP) substrates, provides a new strategy to pattern nanoscopic materials in a controllable way. The selective reaction of a metal precursor with one of the pristine BCP domains is the key step in the SIS process. Here we present a straightforward strategy to selectively modify self-assembled polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) BCP thin films to enable the SIS of a variety of materials including SiO(2), ZnO, and W.

View Article and Find Full Text PDF

A proof of concept of the electronic detection of two anabolic steroids, stanozolol (Stz) and methylboldenone (MB), was carried out using two specific antibodies and arrays of carbon nanotube field-effect transistors (CNTFETs). Antibodies specific for Stz and MB were prepared and immobilized on the carbon nanotubes (CNTs) using two different approaches: direct noncovalent bonding of antibodies to the devices and bonding the antibodies covalently to a polymer previously attached to the CNTFETs. The results indicated that CNTFETs bonded to specific antibodies covalently or noncovalently are able to detect the presence of steroids.

View Article and Find Full Text PDF

Silicon nanowires are expected to have applications in transistors, sensors, resonators, solar cells and thermoelectric systems. Understanding the surface properties and dopant distribution will be critical for the fabrication of high-performance devices based on nanowires. At present, determination of the dopant concentration depends on a combination of experimental measurements of the mobility and threshold voltage in a nanowire field-effect transistor, a calculated value for the capacitance, and two assumptions--that the dopant distribution is uniform and that the surface (interface) charge density is known.

View Article and Find Full Text PDF

Temperature-dependent I-V and C-V spectroscopy of single InAs nanowire field-effect transistors were utilized to directly shed light on the intrinsic electron transport properties as a function of nanowire radius. From C-V characterizations, the densities of thermally activated fixed charges and trap states on the surface of untreated (i.e.

View Article and Find Full Text PDF

A carbon nanotube transistor array was used to detect DNA hybridization. A new approach to ensure specific adsorption of DNA to the nanotubes was developed. The polymer poly (methylmethacrylate(0.

View Article and Find Full Text PDF

A study involving a large number of carbon nanotube transistors reveals that the nanotube diameter and the metal contact material play key roles in determining the on- and off-state currents of these devices. The results are discussed in terms of the Schottky barrier at the metal-semiconductor junction and the variation of this barrier relative to the alignment of energy levels between the carbon nanotube and the metal.

View Article and Find Full Text PDF