Publications by authors named "Yu-Bo Sheng"

Quantum secure direct communication (QSDC) can directly transmit secret messages through quantum channel without keys. Device-independent (DI) QSDC guarantees the message security relying only on the observation of the Bell-inequality violation, but not on any detailed description or trust of the devices' inner workings. Compared with conventional QSDC, DI-QSDC has relatively low secret message capacity.

View Article and Find Full Text PDF

Entanglement purification is to distill high-quality entangled states from low-quality entangled states. It is a key step in quantum repeaters, determines the efficiency and communication rates of quantum communication protocols, and is hence of central importance in long-distance communications and quantum networks. In this work, we report the first experimental demonstration of deterministic entanglement purification using polarization and spatial mode hyperentanglement.

View Article and Find Full Text PDF

Quantum secure direct communication (QSDC) attracts much attention for it can transmit secret messages directly without sharing a key. In this article, we propose a one-step QSDC protocol, which only requires to distribute polarization-spatial-mode hyperentanglement for one round. In this QSDC protocol, the eavesdropper cannot obtain any message, so that this protocol is unconditionally secure in principle.

View Article and Find Full Text PDF

Entanglement purification is used to distill high quality entangled states from several noisy low quality entangled states, and it plays a key role in quantum repeater. The measurement-based entanglement purification protocol (MB-EPP) does not require local two-qubit gates or single-particle measurements on the noisy pairs and may offer significant advantages compared with the gate-based EPPs. We present an alternative MB-EPP in linear optics.

View Article and Find Full Text PDF

High quality time-bin entanglement is widely exploited to achieve the purposes of fundamental tests of physics and the implementation of quantum communication protocols both in free space and optical fiber propagation. However, the imperfect approaches of generating time-bin entangled state will degrade its quality and limit its practical application. Entanglement purification is to distill high quality entangled states from low quality entangled states.

View Article and Find Full Text PDF

High-quality long-distance entanglement is essential for both quantum communication and scalable quantum networks. Entanglement purification is to distill high-quality entanglement from low-quality entanglement in a noisy environment and it plays a key role in quantum repeaters. The previous significant entanglement purification experiments require two pairs of low-quality entangled states and were demonstrated in tabletop.

View Article and Find Full Text PDF

Entanglement purification is an indispensable ingredient in extended quantum communication networks and usually determines the efficiency and communication rate of quantum communication protocols. Different from all existing entanglement purification protocols (EPPs) where two or more copies of low quality mixed entangled states are selected from the same ensemble, here we describe a general and optimal EPP for arbitrary initial mixed states from different ensembles. We show that the successful operation of EPP may not obtain a higher fidelity mixed state, while the discarded source pair, which is usually regarded as a failure in existing EPPs, may have residual entanglement and can be reused to increase the yield of entanglement purification.

View Article and Find Full Text PDF

"Device-independent" not only represents a relaxation of the security assumptions about the internal working of the quantum devices, but also can enhance the security of the quantum communication. In the paper, we put forward the first device-independent quantum secure direct communication (DI-QSDC) protocol and analyze its security and communication efficiency against collective attacks. Under practical noisy quantum channel condition, the photon transmission loss and photon state decoherence would reduce DI-QSDC's communication quality and threaten its absolute security.

View Article and Find Full Text PDF

Security in communication is vital in modern life. At present, security is realized by an encryption process in cryptography. It is unbelievable if a secure communication is achievable without encryption.

View Article and Find Full Text PDF

Distributed secure quantum machine learning (DSQML) enables a classical client with little quantum technology to delegate a remote quantum machine learning to the quantum server with the privacy data preserved. Moreover, DSQML can be extended to a more general case that the client does not have enough data, and resorts both the remote quantum server and remote databases to perform the secure machine learning. Here we propose a DSQML protocol that the client can classify two-dimensional vectors to different clusters, resorting to a remote small-scale photon quantum computation processor.

View Article and Find Full Text PDF

Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task.

View Article and Find Full Text PDF

Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement.

View Article and Find Full Text PDF

We describe a feasible logic Bell-state analysis protocol by employing the logic entanglement to be the robust concatenated Greenberger-Horne-Zeilinger (C-GHZ) state. This protocol only uses polarization beam splitters and half-wave plates, which are available in current experimental technology. We can conveniently identify two of the logic Bell states.

View Article and Find Full Text PDF

The Bell state plays a significant role in the fundamental tests of quantum mechanics, such as the nonlocality of the quantum world. The Bell-state analysis is of vice importance in quantum communication. Existing Bell-state analysis protocols usually focus on the Bell-state encoding in the physical qubit directly.

View Article and Find Full Text PDF

Blind quantum computation (BQC) provides an efficient method for the client who does not have enough sophisticated technology and knowledge to perform universal quantum computation. The single-server BQC protocol requires the client to have some minimum quantum ability, while the double-server BQC protocol makes the client's device completely classical, resorting to the pure and clean Bell state shared by two servers. Here, we provide a deterministic entanglement distillation protocol in a practical noisy environment for the double-server BQC protocol.

View Article and Find Full Text PDF

High quality single qubits are the building blocks in quantum information processing. But they are vulnerable to environmental noise. To overcome noise, purification techniques, which generate qubits with higher purities from qubits with lower purities, have been proposed.

View Article and Find Full Text PDF