A series of dinuclear Ir(III) complexes have been constructed for enhanced photodynamic and photothermal therapy (PDT and PTT) for cisplatin-resistant non-small-cell lung cancer. They enter cells via caveolar endocytosis, target mitochondria but not nuclear, generate both singlet oxygen and superoxide anion, and release heat when exposed to infrared (IR) irradiation, thus inducing reactive oxygen species (ROS)-associated cell disruption and thermal ablation. The IR-generated ROS can further activate caspases, triggering apoptosis.
View Article and Find Full Text PDFChem Commun (Camb)
November 2022
Four dinuclear osmium complexes have been constructed for antitumor phototherapy. The most potent Os4 has extremely high photothermal conversion capability under irradiation of an 808 nm low-power laser, targets mitochondria in human melanoma cells without nucleus affinity, and acts as an antitumor photothermal therapy agent and .
View Article and Find Full Text PDFA series of dinuclear Ru complexes with extremely high TPA cross sections in the range of 800-900 nm have been designed. The amphiphilic complex Ru3 containing tert-butyl groups has balanced performance in singlet oxygen generation and photothermal conversion and becomes the ideal drug candidate of the series. Ru3 targets mitochondria without penetrating the nucleus, which substantially increases its photodynamic therapy activity and reduces its dark cytotoxicity.
View Article and Find Full Text PDF