Publications by authors named "Yu-An Hsu"

The encapsulation of protein enzymes in metal-organic frameworks (MOFs) has been recognized as an effective enzyme immobilization approach. In this study, we demonstrated the influence of enzyme amount and the isoelectric points (pI) of different enzymes on the enzyme loading capacity in both mechanochemical (ball-milling) and water-based approaches. We found that increasing enzyme amounts enhances MOF enzyme loading without compromising activity, while the MOF shell protects encapsulated enzymes from proteinase K degradation through its size-sheltering mechanism.

View Article and Find Full Text PDF

Myopia is regarded as a worldwide epidemic ocular disease, has been proved related to inflammation. CD55, also known as decay-accelerating factor (DAF) can modulate the activation of complement through inhibiting the formation of complement 3 convertase and its dysregulation is involved in various inflammatory diseases. To investigate the association between CD55 and myopia, and to test whether CD55 can inhibit myopia development by suppressing inflammation in the eye, we use three different animal models including monocular form-deprivation myopia, myopia induced by TNF-α administration and allergic conjunctivitis animal model to reveal the CD55 in myopia development.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) have harmful effects on human health and the environment but detecting low levels of VOCs is challenging due to a lack of reliable biomarkers. However, incorporating gold nanoparticles (Au NPs) into metal-organic frameworks (MOFs) shows promise for VOC detection. In this study, we developed nanoscale Au@UiO-66 that exhibited surface-enhanced Raman scattering (SERS) activity even at very low levels of toluene vapors (down to 1.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease is caused by an imbalance in lipid metabolism and immune response to pose a risk factor for liver fibrosis. Recent evidence indicates that M2 macrophages secrete transforming growth factor-β1, which contributes to liver fibrosis. Galectin-12 has been demonstrated to regulate lipid metabolism and macrophage polarization.

View Article and Find Full Text PDF

Background: The increased global incidence of myopia requires the establishment of therapeutic approaches. This study aimed to investigate the effect of Fallopia Japonica (FJ) and Prunella vulgaris (PV) extract on myopia caused by monocular form deprivation (MFD).

Methods: We used human retinal pigment epithelial cell to study the molecular mechanisms on how FJ extract (FJE) and PV extract (PVE) lowering the inflammation of the eye.

View Article and Find Full Text PDF

Certain herbs used in traditional Chinese medicine may produce a growth-enhancing effect by promoting the secretion of growth hormone (GH) by the pituitary gland or mimicking the function of GH. In this study, we aimed to identify herbs that could serve as GH alternatives. A reporter gene assay for GH was developed, and 100 different herbal extracts were assayed.

View Article and Find Full Text PDF

Bisphenol A (BPA) is an endocrine-disrupting chemical that affects lipid metabolism and contributes to non-alcoholic fatty liver disease (NAFLD). The mechanism of BPA exposure in hepatic lipid accumulation and its potential effect on NAFLD remain unclear. This study investigated the effect of BPA-exposure-induced hepatic lipid deposition on the pathology of NAFLD and its underlying mechanism in vitro and in vivo.

View Article and Find Full Text PDF

Resveratrol is a key component of red wine and other grape products. Recent studies have characterized resveratrol as a polyphenol, and shown its beneficial effects on cancer, metabolism, and infection. This study aimed to obtain insights into the biological effects of resveratrol on myopia.

View Article and Find Full Text PDF

Allergic inflammatory diseases are a global public health concern affecting millions of people. Although there are several potential hypotheses, details regarding their molecular mechanisms are still ambiguous. Recently, a group of β-galactoside-binding proteins, galectins, have been revealed as important factors in altering allergic chronic inflammatory diseases.

View Article and Find Full Text PDF

The formation of foam cells, which are macrophages that have engulfed oxidized low-density lipoprotein (OxLDL), constitutes the first stage in the development of atherosclerosis. Previously, we found that knocking down galectin-12, a negative regulator of lipolysis, leads to reduced secretion of monocyte chemoattractant protein-1 (MCP-1), a chemokine that plays an important role in atherosclerosis. This prompted us to study the role of galectin-12 in atherosclerosis.

View Article and Find Full Text PDF

Background: Galectin-9 is a β-galactoside-binding protein with two carbohydrate recognition domains. Recent studies have revealed that galectin-9 regulates cellular biological reactions and plays a pivotal role in fibrosis. The aim of this study was to determine the role of galectin-9 in the pathogenesis of bleomycin-induced systemic sclerosis (SSc).

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is a very common liver disease, and its incidence has significantly increased worldwide. The liver X receptor α (LXRα) is a multifunctional nuclear receptor that controls lipid homeostasis. Inhibition of LXRα transactivation may be beneficial for NAFLD and hyperlipidemia treatment.

View Article and Find Full Text PDF

Obesity is a significant risk factor for various diseases. It is a clinical condition caused by the excessive accumulation of fat, which has a negative impact on human health. Galactin-12 is an adipocyte-expressed protein and possesses adipocyte-inducing activity.

View Article and Find Full Text PDF

Scope: The aim of this study is to investigate the signaling pathways by which allyl isothiocyanate (AITC) reduces adipocyte differentiation and the efficacy of AITC in suppressing galectin-12 levels as a therapeutic for high fat diet (HFD)-induced obesity.

Methods And Results: AITC presents anti-adipogenic effects on 3T3-L1 cells by decreasing lipid droplet accumulation in a dose-dependent manner. AITC suppresses 3T3-L1 differentiation into adipocytes by decreasing galectin-12 expression and by downregulating key adipogenic transcription factors.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are ~22-nucleotide long RNAs that negatively regulate gene expression and inflammatory responses in eukaryotes. The aim of this work was to evaluate the roles of miRNA (miR)-155 on the interferon-γ (IFN-γ)-induced response in biliary atresia (BA), which is the most common form of pediatric chronic liver disease and a leading indication for pediatric liver transplantation. The expression of miR-155 and the suppressor of cytokine signaling 1 (SOCS1) gene in human and mice liver tissues of BA and healthy controls was evaluated.

View Article and Find Full Text PDF

Prevention and treatment of myopia is an important public problem worldwide. We found a higher incidence of myopia among patients with inflammatory diseases such as type 1 diabetes mellitus (7.9%), uveitis (3.

View Article and Find Full Text PDF

Endometriosis results from the ectopic invasion of endometrial glands and stroma in the peritoneal cavity. The exact etiology of endometriosis is still unknown. It has, however, been shown that there are higher numbers of Escherichia coli in menstrual blood, and higher endotoxin levels in menstrual fluid, as well as, in the peritoneal fluid of patients with endometriosis.

View Article and Find Full Text PDF

Type I IFN-induced STAT6 has been shown to have anti-proliferative effects in Daudi and B cells. IFN-sensitive (DS) and IFN-resistant (DR) subclones of Daudi cells were used to study the role of STAT6 in the anti-proliferative activities. Type I IFN significantly increased STAT6 mRNA and protein expression in DS but not DR cells.

View Article and Find Full Text PDF

Galectin-12 is a member of an animal lectin family with affinity for β-galactosides and containing consensus amino acid sequences. Here, we found that galectin-12 was expressed in macrophages and thus aimed to determine how galectin-12 affects inflammation and macrophage polarization and activation. The ablation of galectin-12 did not affect bone marrow cells to differentiate into macrophages, but reduced phagocytic activity against Escherichia coli and lowered the secretion of nitric oxide.

View Article and Find Full Text PDF

Objectives: MUTYH glycosylase involved in DNA repair pathways may be associated with the risk of autoimmune diseases such as rheumatoid arthritis (RA). Therefore, the association between polymorphisms in the MUTYH gene and RA was evaluated.

Methods: We recruited 192 RA patients and 192 healthy subjects in Taiwan.

View Article and Find Full Text PDF

Influenza virus infection is a global public health issue. The effectiveness of antiviral therapies for influenza has been limited by the emergence of drug-resistant viral strains. Therefore, there is an urgent need to identify novel antiviral therapies.

View Article and Find Full Text PDF

Genetic polymorphisms observed in various disease states associated with sensitivity or resistance to specific treatments have been a robust area of investigation for decades, with the potential to allow clinicians to make evidence-based decisions on the appropriate course of treatment. This study aimed to evaluate whether genetic polymorphisms of the signal transducer and activator of transcription 6 gene (STAT6) could be associated with a sustained virological response (SVR) among patients infected with hepatitis C virus genotypes 1 and 2 (HCV-1 and HCV-2) who were treated with peginterferon plus ribavirin (PEG-IFNα-RBV). We analyzed the associations between SVR to PEG-IFNα-RBV therapy and 4 single nucleotide polymorphisms (SNPs) in STAT6.

View Article and Find Full Text PDF

Type I interferons (IFNs) are potent inducers of antiviral and antiproliferative activities in vertebrates. IFNs cause activation of genes encoding antiviral proteins, such as p56 from the IFN-stimulated gene family. There are six tetratricopeptide repeat (TPR) motifs located at the N-terminal sequence of p56.

View Article and Find Full Text PDF

Unlabelled: Wilson disease is a copper metabolism disorder caused by mutations in ATP7B, a copper-transporting adenosine triphosphatase. A molecular diagnosis was performed on 135 patients with Wilson disease in Taiwan. We identified 36 different mutations, eight of which were novel: five missense mutations (Ser986Phe, Ile1348Asn, Gly1355Asp, Met1392Lys, and Ala1445Pro), one deletion (2810delT) in the coding region, and two nucleotide substitutions (-133A→C and -215A→T) in the promoter region.

View Article and Find Full Text PDF