Publications by authors named "Yu- Yu Chen"

Early diagnosis of tumors is becoming increasingly important in modern healthcare. As studies have demonstrated, Poly(ADP)ribose polymerase-1 (PARP-1) is overexpressed in more aggressive tumors. Consequently, sensitive detection of PARP-1 activity holds significant practical importance in clinical diagnostics and biomedical research.

View Article and Find Full Text PDF

The catalytic asymmetric diastereodivergent synthesis of axially chiral 2-alkenylindoles was established via chiral phosphoric acid-catalyzed addition reactions of C3-unsubstituted 2-alkenylindoles with -hydroxybenzyl alcohols under different reaction conditions. Using this strategy, two series of 2-alkenylindoles bearing both axial and central chirality were synthesized in a diastereodivergent fashion with moderate to high yields and good stereoselectivities (up to 99% yield, 95:5 er, >95:5 dr). Moreover, theoretical calculations were performed on the key transition states leading to different stereoisomers, which provided an in-depth understanding of the origin of the observed stereoselectivity and diastereodivergence of the products under different reaction conditions.

View Article and Find Full Text PDF

An operationally simple and green protocol using a NiSO·6HO/cationic 2,2'-bipyridyl ligand system as a water-soluble catalyst for the coupling of arylboronic acids with (2-haloallyl)phosphonates and (2-haloallyl)sulfones in water under air was developed. The reaction was performed at 120 °C with arylboronic acids (2 mmol) and (2-haloallyl)phosphonates or sulfones (1 mmol) in the presence of 5 mol % of the Ni catalytic system in a basic aqueous solution for 1 h, giving the corresponding 2-aryl allyl phosphonates or sulfones in good to excellent yields. This reaction features the use of an abundant transition metal as a catalyst in water and exhibits high functional group tolerance, rendering it an eco-friendly procedure.

View Article and Find Full Text PDF
Article Synopsis
  • Global precipitation is intensifying because of climate change, prompting the need for advanced technology to manage water resources sustainably.
  • This research introduces a smart water control system using AI, featuring a combination of sensors for measuring water levels and quality, alongside an efficient low-cost IoT design.
  • The proposed system can cut costs by over 60% while improving measurement precision by more than 15%, aiming to conserve water resources effectively while addressing issues related to extreme weather events.
View Article and Find Full Text PDF

Epithelioid inflammatory myofibroblastic sarcoma (EIMS) is a highly aggressive malignant subtype of inflammatory myofibroblastoma (IMT) associated with poor prognosis. IMT can occur in various parts of the body, most frequently in the lungs, followed by the mesentery, omentum, retroperitoneum, and pelvis, among other areas; however, it is exceptionally rare in the stomach. Anaplastic lymphoma kinase (ALK) is a critical driver of lung cancer development and is currently the "gold standard" target for non-small cell lung cancer treatment.

View Article and Find Full Text PDF

In recent years, antimicrobial resistance (AMR) has become one of the greatest threats to human health. There is an urgent need to develop new antibacterial agents to effectively treat AMR infection. Herein, a novel nanozyme platform (Cu,N-GQDs@Ru-NO) is prepared, where Cu,N-doped graphene quantum dots (Cu,N-GQDs) are covalently functionalized with a nitric oxide (NO) donor, ruthenium nitrosyl (Ru-NO).

View Article and Find Full Text PDF

A ruthenium complex [Ru(phen)(phen-5-amine)-C14] (Ru-C14) with broad-spectrum antibacterial activity was designed and synthesized; positively charged Ru-C14 could target bacteria electrostatic interactions and showed high binding effectiveness to cell membranes. In addition, Ru-C14 could act as a photosensitizer. Under 465 nm light irradiation, Ru-C14 could generate O, thus disrupting the bacterial intracellular redox balance and leading to bacterial death.

View Article and Find Full Text PDF

In order to understand the composition and accumulation characteristics of phthalates esters (PAEs) in agricultural soils in Gansu province, a total of 41 soil samples from four agricultural soils in Gansu province were collected, and the content of six PAEs compounds was analyzed using a gas chromatography-single quadrupole mass spectrometer (GC-MS). The results showed that the average value of PAEs compounds in agricultural soils in Gansu province was 432.4 μg·kg.

View Article and Find Full Text PDF

Although salinity stress is one of the principal abiotic stresses affecting crop yield, a suitable concentration of NaCl has proven to be useful for increasing crop quality. This study used low salinity (34 mmol/L NaCl) and high salinity (85 mmol/L) to cultivate purple sweetpotato. Using transcriptomics and metabolomics to profile the pathway indicated that glycometabolism, secondary metabolite biosynthesis and the starch catabolic process were the significant pathways under the salinity stress.

View Article and Find Full Text PDF

In this study we prepared six types of carbon nanodots (CNDs) from natural plant materials - through carbonization of two species of bamboo (Bamboo-I, Bamboo-II) and one type of wood (Wood), and through hydrothermal processing of the stem and root of the herb Hayata (MO) and of the agricultural waste of two species of pineapple root (PA, PB). The resulting CNDs were spherical with dimensions on the nanoscale (3-7 nm); furthermore, CND-Bamboo I, CND-Wood, CND-Bamboo II, CND-MO, CND-PA, and CND-PB displayed fluorescence quantum yields of 9.63, 12.

View Article and Find Full Text PDF

Due to the rapid evolution of antibiotic resistance in , antivirulence therapy may be a promising alternative for the effective control of the spread of resistant pathogens. The Chinese Materia Medica has been widely used for the treatment of diseases and production of health foods, and it remains a valuable resource for the discovery of compounds possessing antivirulence activity. Through a infection model, an EtOAc-soluble fraction of 80% EtOH extract of Bunge (SMEA) was found to possess potential anti-infective activity against .

View Article and Find Full Text PDF

Living bacteria therapies have been proposed as an alternative approach to treating a broad array of cancers. In this study, we developed a genetically encoded microbial encapsulation system with tunable and dynamic expression of surface capsular polysaccharides that enhances systemic delivery. Based on a small RNA screen of capsular biosynthesis pathways, we constructed inducible synthetic gene circuits that regulate bacterial encapsulation in Escherichia coli Nissle 1917.

View Article and Find Full Text PDF

In this study, we prepared nitrogen-doped carbon dots (xNCDs) using hydrothermally-treated bitter tea oil residue with urea for the detection of metal ions by monitoring the photoluminescence quenching. The quantum yields of the xNCDs increased from approximately 3.85% (CDs) to 5.

View Article and Find Full Text PDF

Grain size is a key constituent of grain weight and appearance in rice. However, insufficient attention has been paid to the small-effect quantitative trait loci (QTLs) on the grain size. In the present study, residual heterozygous populations were developed for mapping two genetically linked small-effect QTLs for grain size.

View Article and Find Full Text PDF

In this study, we used one-pot A + B polymerizations to synthesize two aliphatic + alicyclic polymer dots (PDs) having non-conjugated hyperbranched structures, employing two types of dianhydrides as the A components, possessing bridged bicyclic alkene (PD-BT) and non-alkene (PD-ET) units, and Jeffamine T403 polyetheramine (T403) as the B components. We prepared PD-ET from commercially available ethylenediaminetetraacetic dianhydride (EDTAD, A) and T403 (B) and PD-BT from bicyclo[2.2.

View Article and Find Full Text PDF

Precisely detecting the catalysts' hot spots temperature in situ instantly during photocatalysis is a great challenge but extremely important for chemical reactions. However, no efficient method has been developed to instantly detect the hot spots temperature in situ during photocatalysis. Herein, we designed a simple and convenient method to measure the instant hot spots temperature in situ on the nanostructure surface during photocatalysis by operando Raman spectroscopy using 4-methoxyphenyl isocyanide (MI) as the probe molecule.

View Article and Find Full Text PDF

Temporary cardiac pacemakers used in periods of need during surgical recovery involve percutaneous leads and externalized hardware that carry risks of infection, constrain patient mobility and may damage the heart during lead removal. Here we report a leadless, battery-free, fully implantable cardiac pacemaker for postoperative control of cardiac rate and rhythm that undergoes complete dissolution and clearance by natural biological processes after a defined operating timeframe. We show that these devices provide effective pacing of hearts of various sizes in mouse, rat, rabbit, canine and human cardiac models, with tailored geometries and operation timescales, powered by wireless energy transfer.

View Article and Find Full Text PDF

Rapid detection of the handiness of chiral molecules is an important topic for pharmaceutical industries because chiral drugs with opposing handiness sometimes exhibit unwanted side effects. In this research, a rapid optical method is proposed to determine the handiness of the chiral drug "Thalidomide". The platform is a large array of three-dimensional (3D) twisted metamaterials fabricated with a novel method by combining nanospherical-lens lithography (NLL) and hole-mask lithography (HML).

View Article and Find Full Text PDF

Implantable drug release platforms that offer wirelessly programmable control over pharmacokinetics have potential in advanced treatment protocols for hormone imbalances, malignant cancers, diabetic conditions, and others. We present a system with this type of functionality in which the constituent materials undergo complete bioresorption to eliminate device load from the patient after completing the final stage of the release process. Here, bioresorbable polyanhydride reservoirs store drugs in defined reservoirs without leakage until wirelessly triggered valve structures open to allow release.

View Article and Find Full Text PDF

One new xanthone, (±) garciesculenxanthone C (), two new biphenyls, garciesculenbiphenyls A () and B (), together with two known compounds, doitungbiphenyl B () and morusignin D (), were isolated from . The structures of new compounds were elucidated by spectroscopic analysis, and the absolute configuration of (±) garciesculenxanthone C () was assigned by a modified Mosher's method. All isolates were evaluated for their antistaphylococcal activities against Newman, USA300 LAC, USA400 MW2, and Mu50 strains.

View Article and Find Full Text PDF

A global transcriptional regulator, MgrA, was previously identified as a key determinant of virulence in Staphylococcus aureus. An 80% EtOH extract of Uncaria gambier was found to attenuate the virulence of S. aureus via its effects on MgrA.

View Article and Find Full Text PDF

Fructus Psoraleae (FP) causes cholestatic liver injury; however, its main toxic constituents that are responsible for causing hepatotoxicity remained undetermined in previous studies. In the present study, psoralen and isopsoralen, the two main constituents of FP, were administered orally to rats (80 and 40 mg/kg, respectively) and mice (320 and 160 mg/kg, respectively) for 28 days, followed by biochemical and histopathological examinations to evaluate their hepatotoxicity. The results showed that psoralen and isopsoralen could induce the toxic reactions of liver and other organs in rats, while mice were not sensitive to these two compounds.

View Article and Find Full Text PDF

Peripheral nerve injuries represent a significant problem in public health, constituting 2-5% of all trauma cases. For severe nerve injuries, even advanced forms of clinical intervention often lead to incomplete and unsatisfactory motor and/or sensory function. Numerous studies report the potential of pharmacological approaches (for example, growth factors, immunosuppressants) to accelerate and enhance nerve regeneration in rodent models.

View Article and Find Full Text PDF

This paper introduces super absorbent polymer valves and colorimetric sensing reagents as enabling components of soft, skin-mounted microfluidic devices designed to capture, store, and chemically analyze sweat released from eccrine glands. The valving technology enables robust means for guiding the flow of sweat from an inlet location into a collection of isolated reservoirs, in a well-defined sequence. Analysis in these reservoirs involves a color responsive indicator of chloride concentration with a formulation tailored to offer stable operation with sensitivity optimized for the relevant physiological range.

View Article and Find Full Text PDF

One of the pathogenic systems of Alzheimer's disease (AD) is the formation of -amyloid plaques in the brains of patients, and amyloidogenic activity becomes one of the therapeutic targets. Here, we report wogonin, one of the major active constituting components in , which has the neuroprotective effects on amyloid- peptides- (A-) induced toxicity. Oral wogonin treatment improved the performance of triple transgenic AD mice (h-APPswe, h-Tau P301L, and h-PS1 M146V) on the Morris water maze, Y-maze, and novel object recognition.

View Article and Find Full Text PDF