Publications by authors named "Yu W Wang"

Thermoelectric materials capable of converting waste heat energy into electrical energy are enchanting for applications in wearable electronics and sensors by harvesting heat energy of the human body. Organic conducting polymers offer promise of thermoelectric materials for next-generation power sources of wearable devices due to their low cost in preparation, easy processing, low toxicity, low thermal conductivity, mechanical flexibility, light weight, and large area application. Generally, the pristine PEDOT:PSS film has low electrical conductivity, small Seebeck coefficient, and low thermal conductivity.

View Article and Find Full Text PDF

The paper investigates the steady state bifurcation analysis in a general Ronsenzwing-MacArthur predator prey model with two prey-taxis under Neumann boundary conditions. The results show that the rich dynamics in predator prey systems with two prey taxis.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) nanoparticles (NPs) are increasingly being engineered for a variety of disease-detection and treatment applications. For example, we have previously developed a fiber-optic Raman-encoded molecular imaging (REMI) system for spectral imaging of biomarker-targeted SERS NPs topically applied on tissue surfaces to identify residual tumors at surgical margins. Although accurate tumor detection was achieved, the commercial SERS NPs used in our previous studies lacked the signal strength to enable high-speed imaging with high pixel counts (large fields of view and/or high spatial resolution), which limits their use for certain time-constrained clinical applications.

View Article and Find Full Text PDF

Previous studies have shown that functionalized nanoparticles (NPs) topically applied on fresh tissues are able to rapidly target cell-surface protein biomarkers of cancer. Furthermore, studies have shown that a paired-agent approach, in which an untargeted NP is co-administered with a panel of targeted NPs, controls for the nonspecific behavior of the NPs, enabling quantitative imaging of biomarker expression. However, given the complexities in nonspecific accumulation, diffusion, and chemical binding of targeted NPs in tissues, studies are needed to better understand these processes at the microscopic scale.

View Article and Find Full Text PDF

In recent decades, various classes of nanoparticles have been developed for optical imaging of cancers. Many of these nanoparticles are designed to specifically target tumor sites, and specific cancer biomarkers, to facilitate the visualization of tumors. However, one challenge for accurate detection of tumors is that the molecular profiles of most cancers vary greatly between patients as well as spatially and temporally within a single tumor mass.

View Article and Find Full Text PDF

Intraoperative identification of carcinoma at lumpectomy margins would enable reduced re-excision rates, which are currently as high as 20% to 50%. Although imaging of disease-associated biomarkers can identify malignancies with high specificity, multiplexed imaging of such biomarkers is necessary to detect molecularly heterogeneous carcinomas with high sensitivity. We have developed a Raman-encoded molecular imaging (REMI) technique in which targeted nanoparticles are topically applied on excised tissues to enable rapid visualization of a multiplexed panel of cell surface biomarkers at surgical margin surfaces.

View Article and Find Full Text PDF

There is a need for intraoperative imaging technologies to guide breast-conserving surgeries and to reduce the high rates of re-excision for patients in which residual tumor is found at the surgical margins during postoperative pathology analyses. Feasibility studies have shown that utilizing topically applied surface-enhanced Raman scattering (SERS) nanoparticles (NPs), in conjunction with the ratiometric imaging of targeted versus untargeted NPs, enables the rapid visualization of multiple cell-surface biomarkers of cancer that are overexpressed at the surfaces of freshly excised breast tissues. In order to reliably and rapidly perform multiplexed Raman-encoded molecular imaging of large numbers of biomarkers (with five or more NP flavors), an enhanced staining method has been developed in which tissue surfaces are cyclically dipped into an NP-staining solution and subjected to high-frequency mechanical vibration.

View Article and Find Full Text PDF

PIWI-associated RNAs (piRNAs or piRs), a new-found class of small non-coding RNAs, which are mainly expressed in germline cells and partly in somatic lines, have a vital role in carcinogenesis by maintaining genomic integrity and regulation of epigenetics. The previous studies have confirmed that the expression of piR-651 is upregulated in several cancer tissue and cell lines, including lung cancer. However, the mechanism of carcinogenesis and piR-651 remains to be elucidated.

View Article and Find Full Text PDF

The biological investigation and detection of esophageal cancers could be facilitated with an endoscopic technology to screen for the molecular changes that precede and accompany the onset of cancer. Surface-enhanced Raman scattering (SERS) nanoparticles (NPs) have the potential to improve cancer detection and investigation through the sensitive and multiplexed detection of cell-surface biomarkers. Here, we demonstrate that the topical application and endoscopic imaging of a multiplexed cocktail of receptor-targeted SERS NPs enables the rapid detection of tumors in an orthotopic rat model of esophageal cancer.

View Article and Find Full Text PDF

The early detection and biological investigation of esophageal cancer would benefit from the development of advanced imaging techniques to screen for the molecular changes that precede and accompany the onset of cancer. Surface-enhanced Raman scattering (SERS) nanoparticles (NPs) have the potential to improve cancer detection and the investigation of cancer progression through the sensitive and multiplexed phenotyping of cell-surface biomarkers. Here, a miniature endoscope featuring rotational scanning and axial pull back has been developed for 2D spectral imaging of SERS NPs topically applied on the lumenal surface of the rat esophagus.

View Article and Find Full Text PDF

Multiplexed surface-enhanced Raman scattering (SERS) nanoparticles (NPs) offer the potential for rapid molecular phenotyping of tissues, thereby enabling accurate disease detection as well as patient stratification to guide personalized therapies or to monitor treatment outcomes. The clinical success of molecular diagnostics based on SERS NPs would be facilitated by the ability to accurately identify tissue biomarkers under time-constrained staining and detection conditions with a portable device. , and experiments were performed to optimize the technology and protocols for the rapid detection (0.

View Article and Find Full Text PDF

Objective: To investigate the effect of H₂S on lower limb ischemia-reperfusion (LIR) induced lung injury and explore the underlying mechanism.

Methods: Wistar rats were randomly divided into control group, IR group, IR+ Sodium Hydrosulphide (NaHS) group and IR+ DL-propargylglycine (PPG) group. IR group as lung injury model induced by LIR were given 4 h reperfusion following 4 h ischemia of bilateral hindlimbs with rubber bands.

View Article and Find Full Text PDF

Rho GTPases control a wide range of cellular processes and contribute to tumor invasion and metastasis. As a regulator of Rho activity, ARHGDIA is aberrantly expressed in several types of tumors and plays different roles in the tumor process. To elucidate the role of ARHGDIA in HCC, we investigated the patterns of its expression, prognosis and clinical profiles in HCC.

View Article and Find Full Text PDF

The maintenance of established memories has recently been shown to involve the stabilization of GluA2-containing AMPA receptors (GluA2/AMPARs) at postsynaptic membranes. Previous studies have suggested that N-ethylmaleimide-sensitive factor (NSF) regulates the stabilization of AMPARs at the synaptic membrane. We therefore disrupted the interaction between GluA2 and NSF in the dorsal hippocampus and examined its effect on the maintenance of object location and contextual fear memory.

View Article and Find Full Text PDF