Publications by authors named "Yu Ting Yan"

Asphyxial cardiac arrest and cardiopulmonary resuscitation (ACA/CPR) can severely damage the brain, but electroacupuncture may help reduce this damage through its anti-inflammatory effects. This study explored whether EA could mitigate microglial pyroptosis via the P2X7R/NLRP3 pathway in a rat ACA/CPR model, given that P2X7R activates the NLRP3 inflammasome, leading to pyroptosis and the release of inflammatory factors. Rats underwent an 8-minute ACA/CPR model, with EA stimulation at Baihui (GV 20), Shuigou (DU 26), and bilateral Neiguan (PC 6) every 12 h for three days.

View Article and Find Full Text PDF

We investigated the dynamics of soil viral community in plantations with different stand ages (8, 21, 27, and 40 years old) in a subtropical region. The viral metagenomics and bioinformatics analysis were used to analyze the compositional and functional differences of soil viral communities across different stand ages, and to explore the environmental driving factors. The results showed that tailed phages dominated soil viral community in subtropical plantations, with the highest proportion of Siphoviridae (19.

View Article and Find Full Text PDF

The Yangtze River, the largest river in China, has not been comprehensively studied for its basin's microplastic pollution status. Therefore, a comprehensive investigation and assessment system of microplastics was developed at the river basin scale to characterize the spatial distribution and composition of microplastics in the Yangtze River Basin in order to analyze their influencing factors and assess their ecological risks. The results showed that the microplastic abundance in the study area ranged from 21 to 44 080 n·m, with an average abundance of 4 483 n·m.

View Article and Find Full Text PDF

Differentiated cardiomyocytes (CMs) must undergo diverse morphological and functional changes during postnatal development. However, the mechanisms underlying initiation and coordination of these changes remain unclear. Here, we delineate an integrated, time-ordered transcriptional network that begins with expression of genes for cell-cell connections and leads to a sequence of structural, cell-cycle, functional, and metabolic transitions in mouse postnatal hearts.

View Article and Find Full Text PDF

Aim: To describe the clinical and radiologic features of retrolaminar migration silicone oil (SiO) and observe the dynamic position of ventricular oil accumulation in supine and prone.

Methods: For this retrospective study, 29 patients who had a history of SiO injection treatment and underwent unenhanced head computed tomography (CT) were included from January 2019 to October 2022. The patients were divided into migration-positive and negative groups.

View Article and Find Full Text PDF

Activating transcription factor 3 (ATF3) is a stress-induced transcription factor and a familiar neuronal marker for nerve injury. This factor has been shown to protect neurons from hypoxic insult in vitro by suppressing carboxyl-terminal modulator protein (CTMP) transcription, and indirectly activating the anti-apoptotic Akt/PKB cascade. Despite prior studies in vitro, whether this neuroprotective pathway also exists in the brain in vivo after ischemic insult remains to be determined.

View Article and Find Full Text PDF

Background: Cardiac regeneration after injury is limited by the low proliferative capacity of adult mammalian cardiomyocytes (CMs). However, certain animals readily regenerate lost myocardium through a process involving dedifferentiation, which unlocks their proliferative capacities.

Methods: We bred mice with inducible, CM-specific expression of the Yamanaka factors, enabling adult CM reprogramming and dedifferentiation in vivo.

View Article and Find Full Text PDF

PIMSRA offers a less invasive option to treat residual LVOTO after ASA. Multimodality imaging is necessary to guide this procedure. Myocardial contrast echocardiography can be used to confirm successful PIMSRA.

View Article and Find Full Text PDF

The balance among quiescence, differentiation, and self-renewal of skeletal muscle stem cells (MuSCs) is tightly regulated by their intrinsic and extrinsic properties from the niche. How the niche controls MuSC fate remains unclear. Ribonucleotide reductase M2B (Rrm2b) modulates MuSC quiescence/differentiation in muscle in response to injury.

View Article and Find Full Text PDF

Background: Complete healing of diabetic wounds continues to be a clinically unmet need. Although robust therapies such as stem cell therapy and growth factor treatment are clinically applied, these treatments are costly for most diabetic wound patients. Therefore, a cheaper alternative is needed.

View Article and Find Full Text PDF

Coronary artery disease (CAD) has been the leading cause of morbidity and mortality worldwide, and its pathogenesis is closely related with the proliferation and migration of vascular smooth muscle cell (VSMC). We previously reported a truncated GATA4 protein lacking C-terminus induced by p.S335X mutation in cardiomyocyte from ventricular septal defect (VSD) patients.

View Article and Find Full Text PDF
Article Synopsis
  • Type 1 diabetes mellitus (T1DM) is an autoimmune condition causing the destruction of insulin-producing pancreatic cells, leading to a critical lack of insulin and complications from current therapies.
  • Experimental islet transplantation can restore insulin regulation, but it faces challenges like donor shortages and costs, making stem cell therapy a promising alternative due to the potential of pluripotent stem cells to develop into functional islet β cells.
  • Research highlights that obtaining fully mature β-like cells from stem cells is difficult due to various defects, and specific transcription factors like PDX1 and NKX6.1 are essential for their proper differentiation and maturation.
View Article and Find Full Text PDF

Background: In multiple myeloma (MM), impact of specific chromosomal translocations involving IgH (14q21 locus, including t(4;14), t(11;14), and t(14;16)) has been explored extensively. However, over 15% MM patients harboring IgH translocation with undefined partners have long been ignored.

Methods: A prospective non-randomized cohort study with a total of 715 newly-diagnosed MM cases was conducted, 13.

View Article and Find Full Text PDF

The striatal complex of basal ganglia comprises two functionally distinct districts. The dorsal district controls motor and cognitive functions. The ventral district regulates the limbic function of motivation, reward, and emotion.

View Article and Find Full Text PDF

CDGSH iron-sulfur domain-containing protein 2 (Cisd2) is pivotal to mitochondrial integrity and intracellular Ca2+ homeostasis. In the heart of Cisd2 knockout mice, Cisd2 deficiency causes intercalated disc defects and leads to degeneration of the mitochondria and sarcomeres, thereby impairing its electromechanical functioning. Furthermore, Cisd2 deficiency disrupts Ca2+ homeostasis via dysregulation of sarco/endoplasmic reticulum Ca2+-ATPase (Serca2a) activity, resulting in an increased level of basal cytosolic Ca2+ and mitochondrial Ca2+ overload in cardiomyocytes.

View Article and Find Full Text PDF

In order to examine the continuous growth capacity of the nitrosation granular sludge (NGS), the sludge was inoculated to start up the columnar sequencing batch reactor (SBR). During 130 d, the concentration of mixed liquor suspended solids (MLSS) in SBR increased from 0.1 g·L to 11.

View Article and Find Full Text PDF

Genomic imprinting is an allelic gene expression phenomenon primarily controlled by allele-specific DNA methylation at the imprinting control region (ICR), but the underlying mechanism remains largely unclear. N-α-acetyltransferase 10 protein (Naa10p) catalyzes N-α-acetylation of nascent proteins, and mutation of human Naa10p is linked to severe developmental delays. Here we report that Naa10-null mice display partial embryonic lethality, growth retardation, brain disorders, and maternal effect lethality, phenotypes commonly observed in defective genomic imprinting.

View Article and Find Full Text PDF

HSPB7 is a member of the small heat-shock protein (HSPB) family and is expressed in the cardiomyocytes from cardiogenesis onwards. A dramatic increase in HSPB7 is detected in the heart and blood plasma immediately after myocardial infarction. Additionally, several single-nucleotide polymorphisms of HSPB7 have been identified to be associated with heart failure caused by cardiomyopathy in human patients.

View Article and Find Full Text PDF

Although remnant cardiomyocytes (CMs) possess a certain degree of proliferative ability, efficiency is too low for cardiac regeneration after injury. In this study, we identified a distinct stage within the initiation phase of CM reprogramming before the MET process, and microarray analysis revealed the strong up-regulation of several mitosis-related genes at this stage of reprogramming. Several candidate genes were selected and tested for their ability to induce CM proliferation.

View Article and Find Full Text PDF

HSPB7 belongs to the small heat-shock protein (sHSP) family, and its expression is restricted to cardiac and skeletal muscles from embryonic stages to adulthood. Here, we found that skeletal-muscle-specific ablation of the HspB7 does not affect myogenesis during embryonic stages to postnatal day 1 (P1), but causes subsequent postnatal death owing to a respiration defect, with progressive myopathy phenotypes in the diaphragm. Deficiency of HSPB7 in the diaphragm muscle resulted in muscle fibrosis, sarcomere disarray and sarcolemma integrity loss.

View Article and Find Full Text PDF

Nuclear receptor interaction protein (NRIP, also known as DCAF6 and IQWD1) is a Ca(2+)-dependent calmodulin-binding protein. In this study, we newly identify NRIP as a Z-disc protein in skeletal muscle. NRIP-knockout mice were generated and found to have reduced muscle strength, susceptibility to fatigue and impaired adaptive exercise performance.

View Article and Find Full Text PDF

Pluripotent-cell-derived cardiomyocytes have great potential for use in research and medicine, but limitations in their maturity currently constrain their usefulness. Here, we report a method for improving features of maturation in murine and human embryonic-stem-cell-derived cardiomyocytes (m/hESC-CMs). We found that coculturing m/hESC-CMs with endothelial cells improves their maturity and upregulates several microRNAs.

View Article and Find Full Text PDF

Leukemia inhibitory factor (LIF) regulates mouse embryonic stem cell (mESC) pluripotency through STAT3 activation, but the downstream signaling remains largely unelucidated. Using cDNA microarrays, we verified B cell leukemia/lymphoma 3 (Bcl3) as the most significantly downregulated factor following LIF withdrawal in mESCs. Bcl3 knockdown altered mESC morphology, reduced expression of pluripotency genes including Oct4, Sox2, and Nanog, and downregulated DNA binding of acetylated histone 3 and RNA polymerase II on the Oct4 promoter.

View Article and Find Full Text PDF

Polyethylene glycol (PEG) is attached to many peptides, proteins, liposomes, and nanoparticles to reduce their immunogenicity and improve their pharmacokinetic and therapeutic properties. Here, we describe hybrid antibodies that can selectively deliver PEGylated medicines, imaging agents, or nanomedicines to target cells. Human IgG1 hybrid antibodies αPEG:αHER2 and αPEG:αCD19 were shown by ELISA, FACS, and plasmon resonance to bind to both PEG and HER2 receptors on SK-BR-3 breast adenocarcinoma and BT-474 breast ductal carcinoma cells or CD19 receptors on Ramos and Raji Burkitt's lymphoma cells.

View Article and Find Full Text PDF

Production of protein containing lengthy stretches of polyglutamine encoded by multiple repeats of the trinucleotide CAG is a hallmark of Huntington's disease (HD) and of a variety of other inherited degenerative neurological and neuromuscular disorders. Earlier work has shown that interference with production of the transcription elongation protein SUPT4H results in decreased cellular capacity to transcribe mutant huntingtin gene (Htt) alleles containing long CAG expansions, but has little effect on expression of genes containing short CAG stretches. zQ175 and R6/2 are genetically engineered mouse strains whose genomes contain human HTT alleles that include greatly expanded CAG repeats and which are used as animal models for HD.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmgog7dd9c5mingmlqsoejbcd7ovbk2eg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once