Significance: For therapeutic approaches for upper tract urothelial carcinomas, the absorption and reduced scattering coefficients of these tissues are essential parameters to quantitatively evaluate the distribution of light treatment effects.
Aim: The and spectra of the human ureter, fatty tissue, ureteral and renal pelvic carcinomas, and porcine ureter and fatty tissue are measured over 400 to 700 nm to evaluate projected light penetration depths .
Approach: The optical properties were determined with a double integrating sphere optical system and inverse Monte Carlo methods.
Photodiagnosis Photodyn Ther
November 2024
Background: Photodynamic diagnosis-assisted transurethral resection of bladder tumor (PDD-TURBT) is an important and useful intervention used for removing non-invasive bladder cancer (NMIBC). Several PDD devices can be used in clinical practice, but few reports have compared them.In this study, we examined the differences in detected fluorescence intensity for each PDD device.
View Article and Find Full Text PDFObjectives: This study aimed to evaluate the efficacy and safety of nanosecond laser treatment of pigmented lesions in silico using a model of melanosome disruption threshold fluence (MDTF) based on skin optical properties.
Methods: Particle size analysis and scanning electron microscopy were performed to determine the threshold fluence for melanosome disruption using a nanosecond laser. By inputting the obtained threshold fluence into the MDTF model and considering the variability in skin optical properties, irradiation parameters were calculated and compared with the results from clinical studies.
Short-pulsed lasers can treat dermal pigmented lesions through selective photothermolysis. The irradiated light experiences multiple scattering by the skin and is absorbed by abnormal melanosomes as well as by normal blood vessels above the target. Because the fluence is extremely high, the absorbed light can cause thermal damage to the adjacent tissue components, leading to complications.
View Article and Find Full Text PDFBackground: The increasing abundance of drug-resistant bacteria is a global threat. Photodynamic therapy is an entirely new, non-invasive method for treating infections caused by antibiotic-resistant strains. We previously described the bactericidal effect of photodynamic therapy on infections caused by a single type of bacterium.
View Article and Find Full Text PDFThis study presents a depth map estimation of fluorescent objects in turbid media, such as biological tissue based on fluorescence observation by two-wavelength excitation and deep learning-based processing. A U-Net-based convolutional neural network is adapted for fluorophore depth maps from the ratiometric information of the two-wavelength excitation fluorescence. The proposed method offers depth map estimation from wide-field fluorescence images with rapid processing.
View Article and Find Full Text PDFLaser ablation is a minimally invasive therapeutic technique to denature tumors through coagulation and/or vaporization. Computational simulations of laser ablation can evaluate treatment outcomes quantitatively and provide numerical indices to determine treatment conditions, thus accelerating the technique's clinical application. These simulations involve calculations of light transport, thermal diffusion, and the extent of thermal damage.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
December 2022
Background: Antimicrobial photodynamic therapy (aPDT) using aminolaevulinic acid (ALA) is a promising alternative to antibiotic therapy. ALA administration induces protoporphyrin IX (PpIX) accumulation in bacteria, and light excitation of the accumulated PpIX generates singlet oxygen to bacterial toxicity. Several factors, including drug administration and light irradiation conditions, contribute to the antibiotic effect.
View Article and Find Full Text PDFBackground And Objectives: In this study, the threshold fluences for disrupting the melanosomes for pigmented skin lesion treatment were determined using a 755-nm picosecond laser for clinical use. Based on the melanosome disruption thresholds, incident fluences corresponding to the target lesion depths were evaluated in silico for different laser spot sizes.
Study Design/materials And Methods: Melanosome samples were isolated from porcine eyes as alternative samples for human cutaneous melanosomes.
The errata correct errors that appeared in Table 2 of the published article.
View Article and Find Full Text PDFSignificance: In laser therapy and diagnosis of skin diseases, the irradiated light distribution, which is determined by the absorption coefficient μa and reduced scattering coefficient μs' of the epidermis, dermis, and subcutaneous fat, affects the treatment outcome and diagnosis accuracy. Although values for μa and μs' have been reported, detailed analysis for Asian skin tissues is still lacking.
Aim: We present μa and μs' measurements of Asian skin tissues in the 400- to 1100-nm wavelength range for evaluating optical penetration depth and energy deposition.