Publications by authors named "Yu Shan Zou"

Objective: Diabetic subjects are at higher risk of ischemic peripheral vascular disease. We tested the hypothesis that advanced glycation end products (AGEs) and their receptor (RAGE) block angiogenesis and blood flow recovery after hindlimb ischemia induced by femoral artery ligation through modulation of immune/inflammatory mechanisms.

Approach And Results: Wild-type mice rendered diabetic with streptozotocin and subjected to unilateral femoral artery ligation displayed increased accumulation and expression of AGEs and RAGE in ischemic muscle.

View Article and Find Full Text PDF

In mammals, changes in the metabolic state, including obesity, fasting, cold challenge, and high-fat diets (HFDs), activate complex immune responses. In many strains of rodents, HFDs induce a rapid systemic inflammatory response and lead to obesity. Little is known about the molecular signals required for HFD-induced phenotypes.

View Article and Find Full Text PDF

Sustained increases in glucose flux via the aldose reductase (AR) pathway have been linked to diabetic vascular complications. Previous studies revealed that glucose flux via AR mediates endothelial dysfunction and leads to lesional hemorrhage in diabetic human AR (hAR) expressing mice in an apoE(-/-) background. Our studies revealed sustained activation of Egr-1 with subsequent induction of its downstream target genes tissue factor (TF) and vascular cell adhesion molecule-1 (VCAM-1) in diabetic apoE(-/-)hAR mice aortas and in high glucose-treated primary murine aortic endothelial cells expressing hAR.

View Article and Find Full Text PDF

Objective: Subjects with diabetes mellitus are at high risk for developing atherosclerosis through a variety of mechanisms. Because the metabolism of glucose results in production of activators of protein kinase C (PKC)β, it was logical to investigate the role of PKCβ in modulation of atherosclerosis in diabetes mellitus.

Approach And Results: ApoE(-/-) and PKCβ(-/-)/ApoE(-/-) mice were rendered diabetic with streptozotocin.

View Article and Find Full Text PDF

Rationale: The mammalian diaphanous-related formin (mDia1), governs microtubule and microfilament dynamics while functioning as an effector for Rho small GTP-binding proteins during key cellular processes such as adhesion, cytokinesis, cell polarity, and morphogenesis. The cytoplasmic domain of the receptor for advanced glycation endproducts binds to the formin homology 1 domain of mDia1; mDia1 is required for receptor for advanced glycation endproducts ligand-induced cellular migration in transformed cells.

Objective: Because a key mechanism in vascular remodeling is the induction of smooth muscle cell migration, we tested the role of mDia1 in this process.

View Article and Find Full Text PDF

Background: The receptor for advanced glycation end-products (RAGE) is implicated in pancreatic tumorigenesis. Activating Kras mutations and p16 inactivation are genetic abnormalities most commonly detected as pancreatic ductal epithelium progresses from intraepithelial neoplasia (PanIN) to adenocarcinoma (PDAC).

Objective: The aim of this study was to evaluate the effect of RAGE (or AGER) deletion on the development of PanIN and PDAC in conditional Kras ( G12D ) mice.

View Article and Find Full Text PDF

Objective: The ubiquitous enzyme protein kinase C (PKC) has been linked to the pathogenesis of vascular injury, but the cell-specific and discrete functions of the betaII isoform have yet to be discovered in this setting. Our previous findings demonstrated significantly increased PKCbetaII in the membrane fraction of injured femoral arteries in wild type (WT) mice and revealed reduction of neointimal expansion in PKCbeta(-/-) mice after acute vascular injury. As PKCbeta(-/-) mice are globally devoid of PKCbeta, we established novel transgenic (Tg) mice to test the hypothesis that the action of PKCbetaII specifically in smooth muscle cells (SMCs) mediates the formation of neointimal lesions in response to arterial injury.

View Article and Find Full Text PDF

Objective: The progression of diabetes is associated with profound endothelial dysfunction. We tested the hypothesis that cellular stress would be detectable in ECs retrieved from arterial and venous vessels of diabetic mice.

Method: We describe a method for direct isolation of well-characterised aortic and venous ECs from mice in which cells are not subjected to propagation in culture.

View Article and Find Full Text PDF

Endothelial activation is a central initiating event in atheroma formation. Evidence from our laboratory and others has demonstrated links between activation of early growth response-1 (Egr-1) and atherosclerosis and also has demonstrated that activated protein kinase C (PKC) betaII is a critical upstream regulator of Egr-1 in response to vascular stress. We tested the role of PKCbeta in regulating key events linked to atherosclerosis and show that the aortas of apoE(-/-) mice display an age-dependent increase in PKCbetaII antigen in membranous fractions vs.

View Article and Find Full Text PDF

Myocardial infarction, stroke, and venous thromboembolism are characterized by oxygen deprivation. In hypoxia, biological responses are activated that evoke tissue damage. Rapid activation of early growth response-1 in hypoxia upregulates fundamental inflammatory and prothrombotic stress genes.

View Article and Find Full Text PDF

Protein kinase C-betaII (PKCbetaII) is an important modulator of cellular stress responses. To test the hypothesis that PKCbetaII modulates the response to myocardial ischemia-reperfusion (I/R) injury, we subjected mice to occlusion and reperfusion of the left anterior descending coronary artery. Homozygous PKCbeta-null (PKCbeta(-/-)) and wild-type mice fed the PKCbeta inhibitor ruboxistaurin displayed significantly decreased infarct size and enhanced recovery of left ventricular (LV) function and reduced markers of cellular necrosis and serum creatine phosphokinase and lactate dehydrogenase levels compared with wild-type or vehicle-treated animals after 30 min of ischemia followed by 48 h of reperfusion.

View Article and Find Full Text PDF

Background: The beneficial effects of reperfusion therapies have been limited by the amount of ischemic damage that occurs before reperfusion. To enable development of interventions to reduce cell injury, our research has focused on understanding mechanisms involved in cardiac cell death after ischemia/reperfusion (I/R) injury. In this context, our laboratory has been investigating the role of the receptor for advanced-glycation end products (RAGE) in myocardial I/R injury.

View Article and Find Full Text PDF

We tested the hypothesis that PKCbeta contributes to vascular smooth muscle cell (SMC) migration and proliferation; processes central to the pathogenesis of restenosis consequent to vascular injury. Homozygous PKCbeta null (-/-) mice or wild-type mice fed the PKCbeta inhibitor, ruboxistaurin, displayed significantly decreased neointimal expansion in response to acute femoral artery endothelial denudation injury compared with controls. In vivo and in vitro analyses demonstrated that PKCbetaII is critically linked to SMC activation, at least in part via regulation of ERK1/2 MAP kinase and early growth response-1.

View Article and Find Full Text PDF

Activation of PKCbetaII is associated with the response to ischemia/reperfusion (I/R), though its role, either pathogenic or protective, has not been determined. In a murine model of single-lung I/R, evidence linking PKCbeta to maladaptive responses is shown in the following studies. Homozygous PKCbeta-null mice and WT mice fed the PKCbeta inhibitor ruboxistaurin subjected to I/R displayed increased survival compared with controls.

View Article and Find Full Text PDF

Early growth response-1 (Egr-1) regulates expression of proinflammatory and procoagulant genes in acute cell stress. Experimental evidence suggested that Egr-1 transcripts were upregulated in human atherosclerotic plaques versus adjacent unaffected tissue. To test the impact of Egr-1 in chronic vascular stress, we examined its role in a murine model of atherosclerosis.

View Article and Find Full Text PDF