Monocular deprivation (MD) during the critical period reduces the visual cortical response to the deprived eye and causes the geniculocortical axons serving the deprived eye to retract. When MD is combined with a pharmacological inhibition of the visual cortex, the cortical neurons weaken their response to an open eye and the input axons serving the open eye retract. To determine whether the 2 types of ocular dominance (OD) plasticity reflect an experience-driven modification of neural circuits sharing the same developmental time course, we analyzed the OD plasticity in an inhibited visual cortex using cats at different ages.
View Article and Find Full Text PDFBackground: Experience during early postnatal development plays an important role in the refinement of specific neural connections in the brain. In the mammalian visual system, altered visual experiences induce plastic adaptation of visual cortical responses and guide rearrangements of afferent axons from the lateral geniculate nucleus. Previous studies using visual deprivation demonstrated that the afferents serving an open eye significantly retract when cortical neurons are pharmacologically inhibited by applying a gamma-aminobutyric acid type A receptor agonist, muscimol, whereas those serving a deprived eye are rescued from retraction, suggesting that presynaptic activity can lead to the retraction of geniculocortical axons in the absence of postsynaptic activity.
View Article and Find Full Text PDF