Publications by authors named "Yu MinLi"

Green eggs are mainly caused by inserting an avian endogenous retrovirus (EVA-HP) fragment into the gene. Although the genotypes for this insertion allele are consistent, eggshell color (ESC) may vary after a peak laying period; light-colored eggs are undesired by consumers and farmers and result in financial loss, so it is necessary to resolve this problem. miRNAs are small non-coding RNAs that exert essential functions in animal development and diseases.

View Article and Find Full Text PDF

The Jinling White duck represents a newly developed breed characterized by a rapid growth rate and a superior meat quality, offering significant economic value and research potential; however, the genetic basis underlying their body weight traits remains less understood. Here, we performed whole-genome resequencing for 201 diverse Jinling White male ducks and conducted population genomic analyses, suggesting a rich genetic diversity within the Jinling White duck population. Equipped with our genomic resources, we applied genome-wide association analysis for body weight on birth (BWB), body weight on 1 wk (BW1), body weight on 3 wk (BW3), body weight on 5 wk (BW5) and body weight on 7 wk (BW7) using 4 statistical models.

View Article and Find Full Text PDF

To investigate the effect of genetic selection on meat quality in ducks, twenty of each fast growth ducks (LCA) and slow growth ducks (LCC) selected from F6 generation of Cherry Valley ducks (♂) x Liancheng white ducks (♀) were analyzed for carcass characteristics, meat quality (physicochemical and textural characteristics), amino acid and fatty acid profiles at 7 wk. Results showed that live body weight, slaughter weight, eviscerated yield and abdominal fat percentage of LCA were significantly higher than those in LCC ducks (P < 0.01).

View Article and Find Full Text PDF

Objective: The objective of this study was to identify candidate genes that play important roles in skeletal muscle development in ducks.

Methods: In this study, we investigated the transcriptional sequencing of embryonic pectoral muscles from two specialized lines: Liancheng white ducks (female) and Cherry valley ducks (male) hybrid Line A (LCA) and Line C (LCC) ducks. In addition, prediction of target genes for the differentially expressed mRNAs was conducted and the enriched gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes signaling pathways were further analyzed.

View Article and Find Full Text PDF

Objective: The objective of this study was to investigate the regulation relationship of Teneleven translocation 1 (Tet1) in DNA demethylation and the proliferation of primordial germ cells (PGCs) in chickens.

Methods: siRNA targeting Tet1 was used to transiently knockdown the expression of Tet1 in chicken PGCs, and the genomic DNA methylation status was measured. The proliferation of chicken PGCs was detected by flow cytometry analysis and cell counting kit-8 assay when activation or inhibition of Wnt4/β-catenin signaling pathway.

View Article and Find Full Text PDF

China boasts a rich diversity of indigenous duck species, some of which exhibit desirable economic traits. Here, we generated transcriptome sequencing datasets of breast muscle tissue samples from 1D of four groups: Pekin duck pure breeding group (P), Jinling White duck breeding group (J), P ♂ × J ♀ orthogonal group (PJ) and J ♂ × P ♀ reciprocal-cross group (JP) ( = 3), chosen based on the distinctive characteristics of duck muscle development during the embryonic period. We identified 5053 differentially expressed genes (DEGs) among the four groups.

View Article and Find Full Text PDF

DNA methylation is a pivotal epigenetic regulatory mechanism in the development of skeletal muscles. Nonetheless, the regulators responsible for DNA methylation in the development of embryonic duck skeletal muscles remain unknown. In the present study, whole genome bisulfite sequencing (WGBS) and transcriptome sequencing were conducted on the skeletal muscles of embryonic day 21 (E21) and day 28 (E28) ducks.

View Article and Find Full Text PDF

The objective of this study was to investigate the effects of rearing systems on the bone quality parameters in chickens using a metabolomics strategy. A total of 419 male one-day-old chicks were randomly allocated to two groups, a floor rearing group (FRG, = 173) and a cage rearing group (CRG, = 246). At 6, 8, 10, and 12 weeks of age, all chickens were radiographed by a digital X-ray machine, and body weight was recorded.

View Article and Find Full Text PDF

Ascorbic acid (also called Vitamin C, VC) strengthens the function of Tets families and directly increases DNA demethylation level to affect myogenic differentiation. However, the precise regulatory mechanism of DNA methylation in chicken myogenesis remains unclear. Results of present study showed that the mRNA expression of MyoD significantly decreased and MyoG and MyHC increased in myoblasts treated with 5 μM 5-azacytidine (5-AZA) and 5 μM VC (p < 0.

View Article and Find Full Text PDF

The Guangxi Partridge chicken is a well-known chicken breed in southern China with good meat quality, which has been bred as a meat breed to satisfy the increased demand of consumers. Compared with line D whose body weight is maintained at the average of the unselected group, the growth rate and weight of the selected chicken group (line S) increased significantly after breeding for four generations. Herein, transcriptome analysis was performed to identify pivotal genes and signal pathways of selective breeding that contributed to potential mechanisms of growth and development under artificial selection pressure.

View Article and Find Full Text PDF

Chicken blastoderm cells (cBCs) obtained from stage X (EG&K) embryos are easily available materials for the study of cell development. However, cBCs are not widely used because they are hard to maintain in long-term culture in vitro. To solve this problem, ascorbic acid (AA; also known as vitamin C (VC)) and all-trans retinoic acid (ATRA) were added into basic culture medium to promote cell growth.

View Article and Find Full Text PDF

Skeletal muscle development is an orchestrated progress that is primarily regulated by temporospatial expression of myogenic regulatory factors (MRFs). Recent studies demonstrated that DNA demethylation also exerted a critical role in myogenesis. However, the function of Tet2 in the regulation of chicken myogenesis still remains unknown.

View Article and Find Full Text PDF

This study was conducted to evaluate the effect of curcumin on laying performance, egg quality, biochemical indicators, hormone levels, and immune activity in hens under heat stress. Hy-Line brown hens (280-day-old) were fed with 0, 100, 150, and 200 mg/kg of curcumin during a 42-D experiment. Compared with the control treatment, supplementation with 150 mg/kg of curcumin improved laying performance and egg quality by significantly increasing egg production, eggshell thickness, eggshell strength (P < 0.

View Article and Find Full Text PDF

Antibiotics stimulate the growth of animals but result in drug residues and bacterial resistance. In this study, the negative effect of antibiotics on abdominal fat deposition was evaluated in broilers. The results showed that adding both chlortetracycline (50 g/1,000 kg) and tylosin (50 g/1,000 kg) significantly increased abdominal fat weight, abdominal fat percentage (p < .

View Article and Find Full Text PDF

High-quality chicken meat is an important source of animal protein for humans. Gene expression profiles in breast muscle tissue were determined, aiming to explore the common regulatory genes relevant to muscle and intramuscular fat (IMF) during the developmental stage in chickens. Results show that breast muscle weight (BMW), breast meat percentage (BMP, %), and IMF (%) continuously increased with development.

View Article and Find Full Text PDF

Testosterone (T) is essential for muscle fiber formation and growth. However, the specific mechanism by which T regulates skeletal muscle development in chicken embryos remains unclear. In this study, the role of T in myoblast proliferation both in vivo and in vitro was investigated.

View Article and Find Full Text PDF

Circular ribonucleic acids (circRNAs) are widely expressed in human cells and play an important role in the pathogenesis of many diseases. Some circRNAs have microRNA (miRNA) binding response elements and interact with miRNA to regulate the expression of target genes.Four patients with a preliminary diagnosis of dengue fever (DF), peripheral whole blood sample in anticoagulant was collected before treatment (pretreatment group) and after effective treatment (posttreatment group), and eight samples were separated and used to screen differentially expressed circRNAs with microarray analysis.

View Article and Find Full Text PDF

Ten-eleven translocation 1 (Tet1) is involved in DNA demethylation in primordial germ cells (PGCs); however, the precise regulatory mechanism remains unclear. In the present study the dynamics of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in developing PGCs and the role of Tet1 in PGC demethylation were analysed. Results show that 5mC levels dropped significantly after embryonic Day 4 (E4) and 5hmC levels increased reaching a peak at E5-E5.

View Article and Find Full Text PDF

Bisphenol A (BPA) as an endocrine-disrupting chemical with weak estrogenic activity affects formation of primordial follicles. This study aimed to identify the potential effects and molecular mechanisms of BPA on meiosis and primordial follicle formation in chickens. The results suggest that the cortical layer was thickened and the number of germ cells that entered into meiosis was increased in BPA-treated ovaries.

View Article and Find Full Text PDF

Regulation of skeletal muscle development requires many of the regulatory networks that are fundamental to developmental myogenesis. ErbB3 binding protein-1 (Ebp1) is involved in the control of myoblasts development in chicken. However, the expression and biological functions of Ebp1 in the progress of myogenesis are unclear.

View Article and Find Full Text PDF

Background: Producing transgenic chickens with chicken blastodermal cells (cBCs) is inefficient due to the extremely low germline transmission capacity of cBCs. As chicken primordial germ cells (PGCs) have been reported as an efficient method for producing transgenic chickens, the inefficiency of cBCs could potentially be resolved by inducing them to differentiate into germ cells. However, whether chemical inducers are able to enhance cBCs germline competence in vitro is unknown and the molecular mechanisms of differentiation of chicken pluripotent cells into germ cells are poorly understood.

View Article and Find Full Text PDF

During embryonic development, IGF-1 fulfils crucial roles in skeletal myogenesis. However, the involvement of IGF-1-induced myoblast proliferation in muscle growth is still unclear. In the present study, we have characterised the role of IGF-1 in myoblast proliferation both in vitro and in vivo and have revealed novel details of how exogenous IGF-1 influences myogenic genes in chicken embryos.

View Article and Find Full Text PDF

Many genes participate in the process of ovarian germ cell development, while the combined action mechanisms of these molecular regulators still need clarification. The present study was focused on determination of differentially expressed genes and gene functions at four critical time points in chicken ovarian development. Comparative transcriptional profiling of ovaries from embryonic day 5.

View Article and Find Full Text PDF

Meiosis is a process unique to the differentiation of germ cells and exhibits sex-specific in timing. Previous studies showed that retinoic acid (RA) as the vitamin A metabolite is crucial for controlling Stra8 (Stimulated by retinoic acid gene 8) expression in the gonad and to initiate meiosis; however, the mechanism by which retinoid-signaling acts has remained unclear. In the present study, we investigated the role of the enzyme retinaldehyde dehydrogenase 2 (RALDH2) which catalyzes RA synthesizes by initiating meiosis in chicken ovarian germ cells.

View Article and Find Full Text PDF

In vertebrates, estrogens are required for the normal development and function of postnatal gonads. However, it remains unclear whether estrogens are able to modulate development of the fetal germ cells. Here, we show that, unexpectedly, chicken primordial germ cells (PGC) lacking estrogen receptor α/β still proliferate in response to 17β-estradiol (E(2)).

View Article and Find Full Text PDF