Midbrain dopaminergic (DAergic) regions including ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) are involved in diverse brain functions. Previous studies demonstrated that the VTA/SNc to nucleus accumbens (NAc) pathway is critical in reward and motivation. Moreover, DAergic innervations within the insular cortex (IC) are reported to play important roles in pain regulation.
View Article and Find Full Text PDFItch is an annoying sensation consisting of both sensory and emotional components. It is known to involve the parabrachial nucleus (PBN), but the following transmission nodes remain elusive. The present study identified that the PBN-central medial thalamic nucleus (CM)-medial prefrontal cortex (mPFC) pathway is essential for itch signal transmission at the supraspinal level in male mice.
View Article and Find Full Text PDFBackground: Latent and active myofascial trigger points (MTrPs) in knee-associated muscles may play a key role in pain management among patients with knee osteoarthritis (KOA). The aim of this study was to investigate the effect of dry needling treatment on pain intensity, disability, and range of motion (ROM) in patients with KOA.
Methods: This randomized, single-blinded, clinical trial was carried out for 6 weeks of treatment and 6-month follow-up.
It has been proved that endomorphin-2 (EM2) produced obvious analgesic effects in the spinal dorsal horn (SDH), which existed in our human bodies with remarkable affinity and selectivity for the μ-opioid receptor (MOR). Our previous study has demonstrated that EM2 made synapses with the spinoparabrachial projection neurons (PNs) in the SDH and inhibited their activities by reducing presynaptic glutamate release. However, the morphological features of EM2 and the spinoparabrachial PNs in the SDH have not been completely investigated.
View Article and Find Full Text PDFItch is an annoying sensation that always triggers scratching behavior, yet little is known about its transmission pathway in the central nervous system. Parabrachial nucleus (PBN), an essential transmission nucleus in the brainstem, has been proved to be the first relay station in itch sensation. Meanwhile, dorsal midline/intralaminar thalamic complex (dMITC) is proved to be activated with nociceptive stimuli.
View Article and Find Full Text PDFLateral and ventral lateral subregions of the periaqueductal gray (l/vlPAG) have been proved to be pivotal components in descending circuitry of itch processing, and their effects are related to the subclassification of neurons that were meditated. In this study, lateral parabrachial nucleus (LPB), one of the most crucial relay stations in the ascending pathway, was taken as the input nucleus to examine the modulatory effect of l/vlPAG neurons that received LPB projections. Anatomical tracing, chemogenetic, optogenetic, and local pharmacological approaches were used to investigate the participation of the LPB-l/vlPAG pathway in itch and pain sensation in mice.
View Article and Find Full Text PDFAs one of the thalamic midline nuclei, the thalamic paraventricular nucleus (PVT) is considered to be an important signal integration site for many descending and ascending pathways that modulate a variety of behaviors, including feeding, emotions, and drug-seeking. A recent study has demonstrated that the PVT is implicated in the acute visceral pain response, but it is unclear whether the PVT plays a critical role in the central processing of chronic pain. Here, we report that the neurons in the posterior portion of the PVT (pPVT) and their downstream pathway are involved in descending nociceptive facilitation regarding the development of neuropathic pain conditions in male rats.
View Article and Find Full Text PDFThe dorsal medial prefrontal cortex (dmPFC) has been recognized as a key cortical area for nociceptive modulation. However, the underlying neural pathway and the function of specific cell types remain largely unclear. Here, we show that lesions in the dmPFC induced an algesic and anxious state.
View Article and Find Full Text PDFBackground: Robust activation of glial cells has been reported to occur particularly during the pathogenesis of bone cancer pain (BCP). Researchers from our group and others have shown that histone deacetylases (HDACs) play a significant role in modulating glia-mediated immune responses; however, it still remains unclear whether HDACs are involved in the activation of glial cells during the development of BCP.
Methods: BCP model was established by intra-tibia tumor cell inoculation (TCI).
Medullary dorsal horn (MDH), the homolog of spinal dorsal horn, plays essential roles in processing of nociceptive signals from orofacial region toward higher centers, such as the ventral posteromedial thalamic nucleus (VPM) and parafascicular thalamic nucleus (Pf), which belong to the sensory-discriminative and affective aspects of pain transmission systems at the thalamic level, respectively. In the present study, in order to provide morphological evidence for whether neurons in the MDH send collateral projections to the VPM and Pf, a retrograde double tracing method combined with immunofluorescence staining for substance P (SP), SP receptor (SPR) and Fos protein was used. Fluoro-gold (FG) was injected into the VPM and the tetramethylrhodamine-dextran (TMR) was injected into the Pf.
View Article and Find Full Text PDFBone cancer pain (BCP) profoundly compromises the life quality of patients with bone metastases. Severe side effects of the drugs which were widely used and effective in the various stages of this condition results in a huge challenge for BCP treatment. Here, we investigated the antinociceptive effects of XPro1595, a soluble tumor necrosis factor (solTNF) inhibitor with considerable immunoregulatory efficacy, on BCP, as well as the underlying mechanisms within the spinal dorsal horn (SDH).
View Article and Find Full Text PDFIn nervous system, glutamate transmission is crucial for centripetal conveyance and cortical perception of sensory signals of different modalities, which necessitates vesicular glutamate transporters 1-3 (VGLUT 1-3), the three homologous membrane-bound protein isoforms, to load glutamate into the presysnaptic vesicles. These VGLUTs, especially VGLUT1 and VGLUT2, selectively label and define functionally distinct neuronal subpopulations at each relay level of the neural hierarchies comprising spinal and trigeminal sensory systems. In this review, by scrutinizing each structure of the organism's fundamental hierarchies including dorsal root/trigeminal ganglia, spinal dorsal horn/trigeminal sensory nuclear complex, somatosensory thalamic nuclei and primary somatosensory cortex, we summarize and characterize in detail within each relay the neuronal clusters expressing distinct VGLUT protein/transcript isoforms, with respect to their regional distribution features (complementary distribution in some structures), axonal terminations/peripheral innervations and physiological functions.
View Article and Find Full Text PDFThe easily developed morphine tolerance in bone cancer pain (BCP) significantly hindered its clinical use. Increasing evidence suggests that histone deacetylases (HDACs) regulate analgesic tolerance subsequent to continuous opioid exposure. However, whether HDACs contribute to morphine tolerance in the pathogenesis of BCP is still unknown.
View Article and Find Full Text PDFThe trigemino-thalamic (T-T) and trigemino-parabrachial (T-P) pathways are strongly implicated in the sensory-discriminative and affective/emotional aspects of orofacial pain, respectively. These T-T and T-P projection fibers originate from the spinal trigeminal nucleus (Vsp). We previously determined that many vesicular glutamate transporter (VGLUT1 and/or VGLUT2) mRNA-positive neurons were distributed in the Vsp of the adult rat, and most of these neurons sent their axons to the thalamus or cerebellum.
View Article and Find Full Text PDFTriptolide (T10), an active component of Tripterygium wilfordii Hook F, is reported to have potent anti-inflammatory and analgesic effects. Additionally, MK-801, a noncompetitive N-methyl-D-aspartate receptor antagonist, can reduce glutamate toxicity and has a significant analgesic effect on chronic pain. In this study, we tested the possible synergistic analgesic ability by intrathecal administration of T10 and MK-801 for the treatment of neuropathic pain.
View Article and Find Full Text PDFEndomorphin-1 (EM1) and endomorphin-2 (EM2) are two endogenous ligands that belong to the opioid peptide family and have the highest affinity and selectivity for the µ-opioid receptor (MOR). The neuroanatomical distribution, ultrastructural features and neural circuitry of EM-containing neuronal structures have been morphologically demonstrated. In addition, the modulation effects of the EMs in different areas reflect their potential endogenous roles in many major physiological processes, including their remarkable roles in the transmission and modulation of noxious information.
View Article and Find Full Text PDFBackground: Bone cancer pain (BCP) severely compromises the quality of life, while current treatments are still unsatisfactory. Here, we tested the antinociceptive effects of triptolide (T10), a substance with considerable anti-tumor efficacies on BCP, and investigated the underlying mechanisms targeting the spinal dorsal horn (SDH).
Methods: Intratibial inoculation of Walker 256 mammary gland carcinoma cells was used to establish a BCP model in rats.
Bone cancer pain has been reported to have unique mechanisms and is resistant to morphine treatment. Recent studies have indicated that neuron-restrictive silencer factor (NRSF) plays a crucial role in modulating the expression of the μ-opioid receptor (MOR) gene. The present study elucidates the regulatory mechanisms of MOR and its ability to affect bone cancer pain.
View Article and Find Full Text PDFCombined the retrograde double tracing with immunofluorescence histochemical staining, we examined the neurons in the lateral parabrachial nucleus (LPB) sent collateral projections to the paraventricular thalamic nucleus (PVT) and central amygdaloid nucleus (CeA) and their roles in the nociceptive transmission in the rat. After the injection of Fluoro-gold (FG) into the PVT and tetramethylrhodamine-dextran (TMR) into the CeA, respectively, FG/TMR double-labeled neurons were observed in the LPB. The percentages of FG/TMR double-labeled neurons to the total number of FG- or TMR-labeled neurons were 6.
View Article and Find Full Text PDFOpiates are commonly used analgesics that often cause clinical respiratory depression. However, their underlying mechanisms remain unclear. Endomorphin-2 (EM2) is a novel, endogenous tetrapeptide opioid with very high affinity and selectivity for the μ-opioid receptor (MOR).
View Article and Find Full Text PDFLigustilide is a major component of Radix Angelica Sinensis and reported to have anti-inflammatory and anti-nociceptive effects. Toll-like receptor 4 (TLR4) has been shown to be expressed in the spinal cord and be involved in inflammatory pain and neuropathic pain. Whether ligustilide can inhibit spinal TLR4 expression in inflammatory pain is still unknown.
View Article and Find Full Text PDFThe ventrolateral periaqueductal gray (vlPAG) is an important brain area, in which 5-HTergic neurons play key roles in descending pain modulation. It has been proposed that opioid peptides within the vlPAG can excite the 5-HTergic neurons by alleviating tonic inhibition from GABAergic neurons, the so-called disinhibitory effect. However, no direct morphological evidence has been observed for the micro-circuitry among the opioid peptide-, GABA-, and 5-HT-immunoreactive (ir) profiles nor for the functional involvement of the opioid peptides in the intrinsic properties of GABAergic and 5-HTergic neurons.
View Article and Find Full Text PDFHormone replacement remains one of the common therapies for menopause-related pain but is associated with risk of orofacial or back pain. Spinal endomorphin-2 (EM-2) is involved in varied pain and its release is steroid-dependent, but whether increasing spinal EM-2 can inhibit thermal hyperalgesia and inflammatory pain in ovariectomized (OVX) female rats, an animal model mimicking menopause, is not clear, nor is the potential involvement of spinal mu-opioid receptor (MOR). In the current study, we revealed that the temporal decrease of spinal EM-2 is accompanied with OVX-induced thermal hyperalgesia that was dose-dependently attenuated by intrathecal (IT) delivery of EM-2.
View Article and Find Full Text PDFDiabetes Res Clin Pract
April 2015
Aims: The present study aims to test whether astrocytes contribute to glucocorticoid-mediated diabetic mechanical allodynia.
Methods: Streptozotocin (STZ)-induced diabetic rats were used in our study. The intrathecal operation was performed 21 days after the onset of diabetes.