Publications by authors named "Yu Larpin"

The increasing antibiotic resistance of bacterial pathogens fosters the development of alternative, non-antibiotic treatments. Antivirulence therapy, which is neither bacteriostatic nor bactericidal, acts by depriving bacterial pathogens of their virulence factors. To establish a successful infection, many bacterial pathogens secrete exotoxins/cytolysins that perforate the host cell plasma membrane.

View Article and Find Full Text PDF

Background: Streptococcal infections are associated with life-threatening pneumonia and sepsis. The rise in antibiotic resistance calls for novel approaches to treat bacterial diseases. Anti-virulence strategies promote a natural way of pathogen clearance by eliminating the advantage provided to bacteria by their virulence factors.

View Article and Find Full Text PDF

Pore-forming toxins (PFTs) form multimeric trans-membrane pores in cell membranes that differ in pore channel diameter (PCD). Cellular resistance to large PFTs (>20 nm PCD) was shown to rely on Ca influx activated membrane repair mechanisms. Small PFTs (<2 nm PCD) were shown to exhibit a high cytotoxic activity, but host cell response and membrane repair mechanisms are less well studied.

View Article and Find Full Text PDF

Bacterial infectious diseases can lead to death or to serious illnesses. These outcomes are partly the consequence of pore-forming toxins, which are secreted by the pathogenic bacteria (eg, pneumolysin of Streptococcus pneumoniae). Pneumolysin binds to cholesterol within the plasma membrane of host cells and assembles to form trans-membrane pores, which can lead to Ca influx and cell death.

View Article and Find Full Text PDF

Bacterial infectious diseases are a leading cause of death. Pore-forming toxins (PFTs) are important virulence factors of Gram-positive pathogens, which disrupt the plasma membrane of host cells and can lead to cell death. Yet, host defense and cell membrane repair mechanisms have been identified: i.

View Article and Find Full Text PDF

Bacterial pore-forming toxins compromise plasmalemmal integrity, leading to Ca influx, leakage of the cytoplasm, and cell death. Such lesions can be repaired by microvesicular shedding or by the endocytic uptake of the injured membrane sites. Cells have at their disposal an entire toolbox of repair proteins for the identification and elimination of membrane lesions.

View Article and Find Full Text PDF

The recent rise of multidrug-resistant Gram-negative bacteria represents a serious threat to public health and makes the search for novel effective alternatives to antibiotics a compelling need. Bacteriophage (Phage) lysins are enzymes that hydrolyze the cell wall of bacteria and represent a promising alternative to tackle this ever-increasing problem. Despite their use is believed to be restricted to Gram-positive bacteria, recent findings have shown that they can also be used against Gram-negative bacteria.

View Article and Find Full Text PDF

The Rapid Polymyxin NP test has been recently developed to rapidly detect polymyxin resistance in Enterobacteriaceae. Here we evaluated this test for detecting MCR-1/MCR-2-producing Enterobacteriaceae using a collection of 70 non-redundant strains either recovered from the environment, animals, or humans. Sensitivity and specificity were found to be 100%.

View Article and Find Full Text PDF