In this work, we report theoretical predictions of the UV-absorption spectra of 9-methylguanine using time dependent density functional theory (TDDFT). Molecular dynamics simulations of the hydrated DNA base are peformed using an empirical force field, Born-Oppenheimer ab initio molecular dynamics (AIMD), and finally path-integral AIMD to understand the role of the underlying electronic potential, solvation, and nuclear quantum vibrations on the absorption spectra. It is shown that the conformational distributions, including hydrogen bonding interactions, are perturbed by the inclusion of nuclear quantum effects, leading to significant changes in the total charge and dipole fluctuations of the DNA base.
View Article and Find Full Text PDFPhotochem Photobiol Sci
August 2013
The kinetics of thymine-thymine cyclobutane pyrimidine dimer (TT-CPD) formation was studied at 23 thymine-thymine base steps in two 247-base pair DNA sequences irradiated at 254 nm. Damage was assayed site-specifically and simultaneously on both the forward and reverse strands by detecting emission from distinguishable fluorescent labels at the 5'-termini of fragments cleaved at CPD sites by T4 pyrimidine dimer glycosylase and separated by gel electrophoresis. The total DNA strand length of nearly 1000 bases made it possible to monitor damage at all 9 tetrads of the type XTTY, where X and Y are non-thymine bases.
View Article and Find Full Text PDFUltraviolet light is strongly absorbed by DNA, producing excited electronic states that sometimes initiate damaging photochemical reactions. Fully mapping the reactive and nonreactive decay pathways available to excited electronic states in DNA is a decades-old quest. Progress toward this goal has accelerated rapidly in recent years, in large measure because of ultrafast laser experiments.
View Article and Find Full Text PDFIt was recently shown that thymine dimers in the all-thymine oligonucleotide (dT)(18) are fully formed in <1 ps after ultraviolet excitation. The speed and low quantum yield of this reaction suggest that only a small fraction of the conformers of this structurally disordered oligonucleotide are in a position to react at the instant of photon absorption. In this work, we explore the hypothesis that conventional molecular dynamics simulations can be used to predict the yield of cyclobutane pyrimidine dimers in DNA.
View Article and Find Full Text PDF