Previous research has demonstrated that humans combine multiple sources of spatial information such as self-motion and landmark cues while navigating through an environment. However, it is unclear whether this involves comparing multiple representations obtained from different sources during navigation (parallel hypothesis) or building a representation first based on self-motion cues and then combining with landmarks later (serial hypothesis). We tested these two hypotheses (parallel vs serial) in an active navigation task using wireless mobile scalp EEG recordings.
View Article and Find Full Text PDFPrevious research has demonstrated that humans combine multiple sources of spatial information such as self-motion and landmark cues, while navigating through an environment. However, it is unclear whether this involves comparing multiple representations obtained from different sources during navigation (parallel hypothesis) or building a representation first based on self-motion cues and then combining with landmarks later (serial hypothesis). We tested these two hypotheses (parallel vs.
View Article and Find Full Text PDFBehav Brain Res
May 2022
Previous research indicates that while animals who locomote on surfaces have a more variable and less precise spatial coding vertically than horizontally, animals who fly do not demonstrate a horizontal advantage (Hayman et al., 2011; Yartsev and Ulanovsky, 2013). The current study investigated whether humans' localization is more variable vertically than horizontally in different locomotion modes.
View Article and Find Full Text PDFOlder adults typically perform worse on spatial navigation tasks, although whether this is due to degradation of memory or an impairment in using specific strategies has yet to be determined. An issue with some past studies is that older adults are tested on desktop-based virtual reality: a technology many report lacking familiarity with. Even when controlling for familiarity, these paradigms reduce the information-rich, three-dimensional experience of navigating to a simple two-dimensional task that utilizes a mouse and keyboard (or joystick) as means for ambulation.
View Article and Find Full Text PDFThis study investigated to what extent humans can encode spatial relations between different surfaces (i.e., floor, walls, and ceiling) in a three-dimensional (3D) space and extend their headings on the floor to other surfaces when locomoting to walls (pitch 90°) and the ceiling (pitch 180°).
View Article and Find Full Text PDF