Publications by authors named "Yu K Tong"

Circulating tumor-derived cell-free DNA (ctDNA) analysis offers an attractive noninvasive means for detection and monitoring of cancers. Evidence for the presence of cancer is dependent on the ability to detect features in the peripheral circulation that are deemed as cancer-associated. We explored approaches to improve the chance of detecting the presence of cancer based on sequence information present on ctDNA molecules.

View Article and Find Full Text PDF

Circulating tumor-derived DNA testing for cancer screening has recently been demonstrated in a prospective study on identification of nasopharyngeal carcinoma (NPC) among 20,174 asymptomatic individuals. Plasma EBV DNA, a marker for NPC, was detected using real-time PCR. While plasma EBV DNA was persistently detectable in 97.

View Article and Find Full Text PDF

Background: Researchers have developed approaches for the noninvasive prenatal testing of single gene diseases. One approach that allows for the noninvasive assessment of both maternally and paternally inherited mutations involves the analysis of single nucleotide polymorphisms (SNPs) in maternal plasma DNA with reference to parental haplotype information. In the past, parental haplotypes were resolved by complex experimental methods or inferential approaches, such as through the analysis of DNA from other affected family members.

View Article and Find Full Text PDF

Plasma DNA obtained from a pregnant woman was sequenced to a depth of 270× haploid genome coverage. Comparing the maternal plasma DNA sequencing data with the parental genomic DNA data and using a series of bioinformatics filters, fetal de novo mutations were detected at a sensitivity of 85% and a positive predictive value of 74%. These results represent a 169-fold improvement in the positive predictive value over previous attempts.

View Article and Find Full Text PDF

Plasma consists of DNA released from multiple tissues within the body. Using genome-wide bisulfite sequencing of plasma DNA and deconvolution of the sequencing data with reference to methylation profiles of different tissues, we developed a general approach for studying the major tissue contributors to the circulating DNA pool. We tested this method in pregnant women, patients with hepatocellular carcinoma, and subjects following bone marrow and liver transplantation.

View Article and Find Full Text PDF

Context: Congenital adrenal hyperplasia (CAH) is an autosomal recessive condition that arises from mutations in CYP21A2 gene, which encodes for the steroidogenic enzyme 21-hydroxylase. To prevent genital ambiguity in affected female fetuses, prenatal treatment with dexamethasone must begin on or before gestational week 9. Currently used chorionic villus sampling and amniocentesis provide genetic results at approximately 14 weeks of gestation at the earliest.

View Article and Find Full Text PDF

Background: The putative promoter of the holocarboxylase synthetase (HLCS) gene on chromosome 21 is hypermethylated in placental tissues and could be detected as a fetal-specific DNA marker in maternal plasma. Detection of fetal trisomy 21 (T21) has been demonstrated by an epigenetic-genetic chromosome dosage approach where the amount of hypermethylated HLCS in maternal plasma is normalized using a fetal genetic marker on the Y chromosome as a chromosome dosage reference marker. We explore if this method can be applied on both male and female fetuses with the use of a paternally-inherited fetal single nucleotide polymorphism (SNP) allele on a reference chromosome for chromosome dosage normalization.

View Article and Find Full Text PDF

Background: The use of fetal DNA in maternal plasma for noninvasive prenatal diagnosis of trisomy 21 (T21) is an actively researched area. We propose a novel method of T21 detection that combines fetal-specific epigenetic and genetic markers.

Methods: We used combined bisulfite restriction analysis to search for fetal DNA markers on chromosome 21 that were differentially methylated in the placenta and maternal blood cells and confirmed any target locus with bisulfite sequencing.

View Article and Find Full Text PDF

Background: The presence of fetal DNA in maternal plasma represents a source of fetal genetic material for noninvasive prenatal diagnosis; however, the coexisting background maternal DNA complicates the analysis of aneuploidy in such fetal DNA. Recently, the SERPINB5 gene on chromosome 18 was shown to exhibit different DNA-methylation patterns in the placenta and maternal blood cells, and the allelic ratio for placenta-derived hypomethylated SERPINB5 in maternal plasma was further shown to be useful for noninvasive detection of fetal trisomy 18.

Methods: To develop a similar method for the noninvasive detection of trisomy 21, we used methylation-sensitive single nucleotide primer extension and/or bisulfite sequencing to systematically search 114 CpG islands (CGIs)-76% of the 149 CGIs on chromosome 21 identified by bioinformatic criteria-for differentially methylated DNA patterns.

View Article and Find Full Text PDF

Background: The discovery of cell-free fetal DNA in maternal plasma has opened up new possibilities for noninvasive prenatal diagnosis and monitoring. Among the fetal markers that have been described, methylation markers are sex and polymorphism independent. Methylation-sensitive restriction endonucleases are commonly used to digest hypomethylated DNA molecules, and the hypermethylated molecules remain intact for detection.

View Article and Find Full Text PDF

The pseudomalignant nature of the placenta prompted us to search for tumor suppressor gene hypermethylation, a phenomenon widely reported in cancer, in the human placenta. Nine tumor suppressor genes were studied. Hypermethylation of the Ras association domain family 1 A (RASSF1A) gene was found in human placentas from all three trimesters of pregnancy but was absent in other fetal tissues.

View Article and Find Full Text PDF

Background: The discovery of cell-free fetal DNA in maternal plasma has opened up new possibilities for noninvasive prenatal diagnosis. However, the use of maternal plasma fetal DNA for the direct detection of fetal chromosomal aneuploidies has not been reported. We postulate that the aneuploidy status of a fetus could be revealed by an epigenetic allelic ratio approach, i.

View Article and Find Full Text PDF

Successful detection of circulating nucleic acids has opened up new possibilities in cancer testing and prenatal diagnosis. Circulating DNA markers are useful in cancer detection, prognostication and monitoring. Cancer-associated molecular changes which can be detected include gene mutations, chromosomal rearrangements, microsatellite alterations, viral sequences, and, to be discussed in more detailed, gene promoter hypermethylation.

View Article and Find Full Text PDF

The discovery of fetal DNA in the plasma of pregnant women has opened up new approaches for noninvasive prenatal diagnosis and monitoring. Up to now, the lack of a fetal DNA marker that can be universally detected in maternal plasma has limited the clinical application of this technology. We hypothesized that epigenetic differences between the placenta and maternal blood cells could be used for developing such a marker.

View Article and Find Full Text PDF

Background: The availability of an early diagnostic tool for severe acute respiratory syndrome (SARS) would have major public health implications. We investigated whether the SARS coronavirus (SARS-CoV) can be detected in serum and plasma samples during the early stages of SARS and studied the potential prognostic implications of such an approach.

Methods: We developed two real-time quantitative reverse transcription-PCR (RT-PCR) assays, one for the polymerase and the other for the nucleocapsid region of the virus genome, for measuring the concentration of SARS-CoV RNA in serum/plasma samples from SARS patients.

View Article and Find Full Text PDF