Alcoholic liver disease (ALD), with its increasing morbidity and mortality, has seriously and extensively affected the health of people worldwide. Caffeic Acid Dimethyl Ether (CADE) significantly inhibits alcohol-induced hepatic steatosis through AMP-activated protein kinase (AMPK) pathway, but its in-depth mechanism remains unclear. This work aimed to clarify further mechanism of CADE in improving hepatic lipid accumulation in ALD through the microRNA-378b (miR-378b)-mediated Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2)-AMPK signaling pathway.
View Article and Find Full Text PDFAlcoholic liver disease (ALD) has seriously harmed the health of people worldwide, but its underlying mechanisms remain unclear. This study aims to clarify the biological function of microRNA-378b (miR-378b) in ethanol (EtOH)-induced hepatic lipid accumulation. Here, we report miR-378b is over-expressed in EtOH-induced cells and EtOH-fed mice and finally accelerates lipid accumulation.
View Article and Find Full Text PDFA previous study indicated that microRNA-378b (miR-378b) plays a critical role in controlling hepatic insulin resistance by targeting insulin receptor (IR) and p110α in alcoholic liver disease (ALD). Methyl ferulic acid (MFA), a bioactive ingredient in Securidaca inappendiculata Hassk rhizomes, exhibits multiple pharmacological activities. It has been reported that MFA ameliorates insulin resistance in ALD, whereas the underlying molecular mechanism remains unclear.
View Article and Find Full Text PDFPumpkins (; Cucurbitaceae) are the rich source of nutrients and valued for their biologically active substances to be used for the treatment of several diseases. The contents, composition, and conformation of starch are the significant quality traits of . Two germplasms were targeted for analysis regarding the taste difference.
View Article and Find Full Text PDFInsulin resistance has been implicated in alcoholic liver disease. A previous study has shown that microRNAs (miRNAs) play a major role in the production, secretion, and function of insulin. MiRNAs are capable of repressing multiple target genes that in turn negatively regulate various physiological and pathological activities.
View Article and Find Full Text PDFBackground: Pumpkins (Cucurbita moschata; Cucurbitaceae) are valued for their fruits and seeds and are rich in nutrients. Carotenoids and sugar contents, as main feature of pumpkin pulp, are used to determine the fruit quality.
Results: Two pumpkin germplasms, CMO-X and CMO-E, were analyzed regarding the essential quality traits such as dry weight, soluble solids, organic acids, carotenoids and sugar contents.
One of the key events during the development of alcoholic liver disease (ALD) is that alcohol inhibits the insulin signaling pathway in liver and leads to disorders of glucose and lipid metabolism. Methyl ferulic acid (MFA) is a biologically active monomer isolated from the root of Hasskarl. It has been reported that MFA has a hepatoprotective effect against alcohol-induced liver injury and .
View Article and Find Full Text PDFBackground: Caixin and Zicaitai (Brassica rapa) belong to Southern and Central China respectively. Zicaitai contains high amount of anthocyanin in leaf and stalk resulting to the purple color. Stalk is the major edible part and stalk color is an economically important trait for the two vegetables.
View Article and Find Full Text PDFLiver fibrosis is a pathological wound-healing response caused by chronic liver damage due to a virus, autoimmune disorder, or drugs. Hepatic stellate cells (HSCs) play an essential role in the pathogenesis of liver fibrosis. Methyl ferulic acid (MFA), a biologically active monomer, has a protective effect on liver injury.
View Article and Find Full Text PDFMethyl ferulic acid (MFA) is a biologically active monomer extracted and purified from the Chinese herbal medicine Securidaca inappendiculata hasskarl. The previously studies showed that MFA improved acute liver injury induced by ethanol. However, the effect of MFA on ethanol-induced hepatic steatosis in alcoholic liver disease (ALD) still remains unclear.
View Article and Find Full Text PDFThe aim of the present study was to assess the molecular mechanism of ethanol‑induced oxidative stress‑mediated apoptosis in L‑02 liver cells in order to elucidate novel pathways associated with alcoholic liver disease. L‑02 cells were treated with 400 mM ethanol with or without inhibitors. The cell viability was measured by an MTT assay.
View Article and Find Full Text PDFPumpkin (Cucurbita moschata) is an economically worldwide crop. Few quantitative trait loci (QTLs) were reported previously due to the lack of genomic and genetic resources. In this study, a high-density linkage map of C.
View Article and Find Full Text PDFAims: The present study aimed to investigate the hepatoprotective effects of Methyl ferulic acid (MFA) against oxidative stress and apoptosis as well as inflammation in mice with liver injury induced by alcohol and its underlying mechanisms.
Methods: C57BL/6 mice were divided into a control group,a model group, and Methyl ferulic acid with high dosage (20Â mg/kg), moderate dosage (10Â mg/kg) and low dosage (5Â mg/kg) groups. The general condition and organ index of each group were investigated.
Dietary carotenoids have been shown to be beneficial to health by decreasing the risk of many diseases. Attempts to enhance carotenoids in food crops have been successful although higher plants appear to resist big changes of carotenoid biosynthesis by metabolic engineering. Here we report the generation of a more nutritious tomato by modifying the intrinsic carotenes to astaxanthin, a high-value ketocarotenoid rarely found in plants.
View Article and Find Full Text PDFExtending the carotenoid pathway to astaxanthin in plants is of scientific and industrial interest. However, expression of a microbial β-carotene ketolase (BKT) that catalyses the formation of ketocarotenoids in transgenic plants typically results in low levels of astaxanthin. The low efficiency of BKTs in ketolating zeaxanthin to astaxanthin is proposed to be the major limitation for astaxanthin accumulation in engineered plants.
View Article and Find Full Text PDF