The ability to culture and maintain postnatal mouse hippocampal and cortical neurons is highly advantageous, particularly for studies on genetically engineered mouse models. Here we present a protocol to isolate and culture pyramidal neurons from the early postnatal (P0-P1) mouse hippocampus and cortex. These low-density dissociated cultures are grown on poly-L-lysine-coated glass substrates without feeder layers.
View Article and Find Full Text PDFThe maintenance of spine and synapse number during development is critical for neuronal circuit formation and function. Here we show that delta-catenin, a component of the cadherin-catenin cell adhesion complex, regulates spine and synapse morphogenesis during development. Genetic ablation or acute knockdown of delta-catenin leads to increases in spine and synapse density, accompanied by a decrease in tetrodotoxin induced spine plasticity.
View Article and Find Full Text PDFLocalization of presynaptic components to synaptic sites is critical for hippocampal synapse formation. Cell adhesion-regulated signaling is important for synaptic development and function, but little is known about differentiation of the presynaptic compartment. In this study, we describe a pathway that promotes presynaptic development involving p120catenin (p120ctn), the cytoplasmic tyrosine kinase Fer, the protein phosphatase SHP-2, and beta-catenin.
View Article and Find Full Text PDFNeurotrophin-activated receptor tyrosine kinases (Trks) regulate sensory neuron survival, differentiation, and function. To permanently mark cells that ever express TrkC-kinase, mice with lacZ and GFP reporters of Cre recombinase activity were crossed with mice having IRES-cre inserted into the kinase-containing exon of the TrkC gene. Prenatal reporter expression matched published locations of TrkC-expression.
View Article and Find Full Text PDF