Single-atom catalysts with abnormally high catalytic activity have garnered extensive attention and interest for their application in tumor therapy. Despite the advancements made with current nanotherapeutic agents, developing efficient systems for cancer treatment remains challenging due to low activity, uncontrollable behavior, and nonselective interactions. Herein, we have constructed Ru single-atom-anchored MXene nanozymes (Ru-TiCT-PEG) with a mild photothermal effect and multi-enzyme catalytic activity for synergistic tumor therapy.
View Article and Find Full Text PDFAccurate identification of cancer cells under complex physiological environments holds great promise for noninvasive diagnosis and personalized medicine. Herein, we developed dual-aptamer-based DNA logic-gated series lamp probes (Apt-SLP) by coupling a DNA cell-classifier (DCC) with a self-powered signal-amplifier (SSA), enabling rapid and sensitive identification of cancer cells in a blood sample. DCC is endowed with two extended-aptamer based modules for recognizing the two cascade cell membrane receptors and serves as a DNA logic gate to pinpoint a particular and narrow subpopulation of cells from a larger population of similar cells.
View Article and Find Full Text PDFThe neurotoxin methylmercury in seafood threatens food safety worldwide. China has implemented stringent wastewater policies, established numerous treatment facilities and enforced rigorous water quality standards to address pollution in its waterways. However, the impact of these policies on seafood safety and methylmercury exposure remains unknown.
View Article and Find Full Text PDFActa Neurol Taiwan
December 2024
Originally thought to be incurable, huge therapeutic progress has been made in recent years in the field of inherited neuromuscular disorders. Approaches aiming to rescue the underlying pathophysiology, i.e.
View Article and Find Full Text PDFAggregation-induced emission (AIE) photosensitizers are promising for photodynamic therapy, yet their short excitation wavelengths present a limitation. In this study, we develop a series of organic photosensitizers with dual modulation capabilities based on excited-state intramolecular proton transfer (ESIPT) and AIE. Notably, we synthesize near-infrared (NIR)-excited photosensitive nanoparticles through a coassembly strategy utilizing upconversion nanoparticles (UCNPs) and amphiphilic polymers.
View Article and Find Full Text PDFHua Xi Kou Qiang Yi Xue Za Zhi
December 2024
Objectives: This study aimed to investigate the effects of silencing Ras homolog family member C (RhoC) on the proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT) of salivary adenoid cystic carcinoma (SACC) and its molecular mechanisms.
Methods: A total of 27 SACC lesions and normal salivary gland tissues that were surgically resected at Qingdao Municipal Hospital from January 1, 2019 to March 1, 2024 were selected, and the expression levels of RhoC were detected by Western blot and immunohistochemistry. Three small interfering RNA (siRNAs) were designed to target the RhoC gene sequence, transfected into SACC-LM and SACC-83 cell lines, and evaluated for transfection efficiency.
Background: The process of bone healing is complex and involves the participation of osteogenic stem cells, extracellular matrix, and angiogenesis. The advancement of bone regeneration materials provides a promising opportunity to tackle bone defects. This study introduces a composite hydrogel that can be injected and cured using UV light.
View Article and Find Full Text PDFBackground: Mild cognitive impairment (MCI) may lead to difficulty maintaining postural stability and balance during locomotion. This heightened susceptibility to falls is particularly evident during tasks such as obstacle negotiation, which demands efficient motor planning and reallocation of attentional resources. This study proposed a multi-objective optimal control (MOOC) technique to assess the changes in motor control strategies during obstacle negotiation in older people affected by amnestic MCI.
View Article and Find Full Text PDFIntroduction: Nanofibrous spheres, with their injectable format and biomimetic three-dimensional topologies that emulate the complexity of natural extracellular environments, have become increasingly attractive for applications in biomedical and regenerative medicine. Our research contributes to this growing field by detailing the design and fabrication of a novel series of polylactic acid/nano-hydroxyapatite (PLA/nHA) hybrid nanofibrous spheres.
Methods: These advanced structures were created by integrating electrospinning and electrospray techniques, which allowed for precise control over the nanofibrous spheres, especially in size.
Platelet-rich plasma (PRP) intrauterine infusion has been demonstrated to be effective in treating thin endometrium and achieving pregnancy. However, the rapid release of growth factors limits its effectiveness in clinical applications, and thus, multiple intrauterine infusions are often required to achieve therapeutic efficacy. In this study, a GelMA hydrogel microsphere biomaterial is developed using droplet microfluidics to modify the delivery mode of PRP and thus prolong its duration of action.
View Article and Find Full Text PDFConsidering the profound impact of structure on heterojunction catalysts, the rational design of emerging catalysts with optimized energy band structures is required for antitumor efficiency. Herein, we select titanium nitride (TiN) and Pt to develop a multifunctional Schottky heterojunction named Pt/H-TiN&SRF (PHTS) nanoparticles (NPs) with a narrowed bandgap to accomplish "four birds with one stone" involving enzyo/sono/photo three modals and additional ferroptosis. The -grown Pt NPs acted as electron traps that can cause the energy band to bend upward and form a Schottky barrier, thereby facilitating the separation of electron/hole pairs in exogenous stimulation catalytic therapy.
View Article and Find Full Text PDFTo study the physical property effects of the laser on GaInP/GaAs/Ge solar cells and their sub-cell layers, a pulsed laser with a wavelength of 532 nm was used to irradiate the solar cells under various energy conditions. The working performance of the cell was measured with a source meter. The electroluminescence (EL) characteristics were assessed using an ordinary and an infrared camera.
View Article and Find Full Text PDFBone defects typically result in bone nonunion, delayed or nonhealing, and localized dysfunction, and commonly used clinical treatments (i.e., autologous and allogeneic grafts) have limited results.
View Article and Find Full Text PDFBackground: Chemotherapy-induced nausea and vomiting (CINV) is one of the most frequent and critical side effects due to chemotherapeutics. In China, Xiao-Ban-Xia-Tang (XBXT) has already been applied extensively to prevent and treat CINV. However, there is limited testimony on the effectiveness and safety of this purpose, and there was no correlative systematic review.
View Article and Find Full Text PDFTo study the interference effect of the laser in motion mode on a CCD, the continuous laser with the wavelength of 532 nm at different motion speeds was used to scan the CCD. The experimental results show that the crosstalk phenomenon produced by static and dynamic irradiation is significantly different. When the continuous laser statically radiates the CCD, the vertical crosstalk line is observed in the output image.
View Article and Find Full Text PDFPiezoelectric dynamic therapy (PzDT) is an effective method of tumor treatment by using piezoelectric polarization to generate reactive oxygen species. In this paper, two-dimensional Cu-doped BiOCl nanosheets with surface vacancies are produced by the photoetching strategy. Under ultrasound, a built-in electric field is generated to promote the electron and hole separation.
View Article and Find Full Text PDFAdvancements in tissue engineering are crucial for successfully healing tendon-bone connections, especially in situations like anterior cruciate ligament (ACL) restoration. This study presents a new and innovative three-dimensional scaffold, reinforced with nanofibers, that is specifically intended for acellular tendon complexes. The scaffold consists of a distinct layered arrangement comprising an acellular tendon core, a middle layer of polyurethane/type I collagen (PU/Col I) yarn, and an outside layer of poly (L-lactic acid)/bioactive glass (PLLA/BG) nanofiber membrane.
View Article and Find Full Text PDFEpidermal stem cells (EpSCs) play a vital role in skin wound healing through re-epithelialization. Identifying chemicals that can promote EpSC proliferation is helpful for treating skin wounds. This study investigates the effect of morroniside on cutaneous wound healing in mice and explores the underlying mechanisms.
View Article and Find Full Text PDFA guided bone regeneration (GBR) membrane can act as a barrier to prevent the invasion and interference from foreign soft tissues, promoting infiltration and proliferation of osteoblasts in the bone defect area. Herein, a composite scaffold with dual functions of osteogenesis and antibacterial effects was prepared for GBR. A polycaprolactone (PCL)/nano-hydroxyapatite (n-HA) aerogel produced by electrospinning and freeze-drying techniques was fabricated as the loose layer of the scaffold, while a PCL nanofiber membrane was used as the dense layer.
View Article and Find Full Text PDFPiezoelectric catalysis is a novel catalytic technology that has developed rapidly in recent years and has attracted extensive interest among researchers in the field of tumor therapy for its acoustic-sensitizing properties. Nevertheless, researchers are still controversial about the key technical difficulties in the modulation of piezoelectric sonosensitizers for tumor therapy applications, which is undoubtedly a major obstacle to the performance modulation of piezoelectric sonosensitizers. Clarification of this challenge will be beneficial to the design and optimization of piezoelectric sonosensitizers in the future.
View Article and Find Full Text PDFThe insufficient exposure sites and active site competition of multienzyme are the two main factors to hinder its therapeutic effect. Here, a phase-junction nanomaterial (amorphous-crystalline CuS-AgS) is designed and prepared through a simple room temperature ion-exchange process. A small amount of Ag is added into CuS nanocrystals, which transforms CuS into amorphous phased CuS and produces crystalline AgS simultaneously.
View Article and Find Full Text PDFObjective: Patients who undergo a biplanar ascending medial open-wedge high tibial osteotomy with an excessive correction angle might experience patella infera and even knee pain after surgery. The purpose of this study was to identify the cut-off points for the degree of knee varus correction of open-wedge high tibial osteotomy, which is related to the symptomatic patellar position change.
Methods: This retrospective study included 124 patients (mean age 61.