Publications by authors named "Yu Bin Dong"

As an indispensable member of the reticular material family, metal-carbon-based organometallic frameworks (OMFs) remain largely underexplored, and no chiral OMFs (COMFs) have been reported thus far. Herein, we first report the construction of COMFs from a Pd-isocyanide OMF via nucleophilic addition to the Pd-isocyanide moiety with optically pure amines. The obtained Pd-bis(acyclic diaminocarbene) (Pd-BADC)-derived chiral OMFs display excellent applicability and can be reusable chiral catalysts to highly promote asymmetric Strecker and Suzuki-Miyaura cross-coupling reactions in a heterogeneous way.

View Article and Find Full Text PDF

Herein, we report a nanoscale composite COF material loaded with copper peroxide (CuO) and nitric oxide (NO) prodrug a stepwise post-synthetic modification. The obtained CuO2@COF-SNO can undergo a cascade reaction in the tumor microenvironment to generate reactive oxygen and nitrogen species (ROS/RNS) to enhance chemodynamic therapy of the tumor.

View Article and Find Full Text PDF

A covalent organic framework Py-O-COF, which was directly synthesized from a monomer containing pyridine oxide with its partner imine condensation, could significantly promote the allylation of aromatic aldehydes with allyl(trichloro)silane in a heterogeneous manner.

View Article and Find Full Text PDF

With rapid societal development, there has been a significant increase in the demand for chemicals. Ethylene, as the most widely used basic chemical, is now subject to increasingly stringent quality and purity standards. The separation and purification of ethylene from C2 hydrocarbons covalent organic frameworks (COFs) are a fascinating and challenging area of research.

View Article and Find Full Text PDF

An increasing variety of organic reactions have been developed for the synthesis of more structurally stable and multifunctional COFs. Here, we report a class of β-ketamine linked covalent organic frameworks that were constructed through the CeCl-catalyzed multi-component Mannich reaction at room temperature. And the TAD-COF obtained based on this method could significantly promote the light-driven oxidative hydroxylation of arylboronic acids.

View Article and Find Full Text PDF

Covalent organic frameworks are a type of crystalline porous materials that linked through covalent bond, and they have numerous potential applications in adsorption, separation, catalysis, and more. However, there are rarely relevant reported on photochromism. Fortunately, a hydrazone-linked DBTB-DETH-COF is rapidly generated through ultrasound method.

View Article and Find Full Text PDF

Separation of racemic drugs is of great importance and interest in chemistry and pharmacology. Here, we report the bottom-up synthesis of the binaphthyl-based chiral covalent organic frameworks (CCOFs), (R)-BHTP-COF. Then, high-performance liquid chromatography (HPLC) columns were prepared using (R)-BHTP-COF as a chiral stationary phase (CSP).

View Article and Find Full Text PDF

Herein, we report a composite COF material loaded with a Pt nanoenzyme and an organic photosensitizer BODIPY, synthesized a stepwise post-synthetic modification. The obtained nanoparticles can efficiently and continuously convert HO to O, thereby increasing the efficiency of single-linear oxygen production and achieving efficient tumor inhibition.

View Article and Find Full Text PDF

Multicomponent tandem reactions have become indispensable synthetic methods due to their economic advantages and efficient usage in natural products and drug synthesis. The emergence of metalated covalent organic frameworks (MCOFs) has opened up new opportunities for the advancement of multicomponent tandem reactions. In contrast to commonly used homogeneous transition metal catalysts, MCOFs possess regular porosity, high crystallinity, and rich metal chelation sites that facilitate the uniform distribution and anchoring of metals within their cavities.

View Article and Find Full Text PDF

Quinoline carboxylic acid-linked and Pd nanoparticle (NP)-loaded COF nanospheres were constructed a three-component one-pot Doebner reaction and post-synthetic metalation. The obtained Pd@DhaTAPB-COOH solid stabilizer can greatly promote the pH-switched recyclable Pickering interfacial dechlorination reaction, which sheds light on the bright future of smart Pickering emulsion catalysis.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) have recently drawn intense attention due to their potential applications in photocatalysis. Herein, we report a multifunctional COF which consists of triphenylamine (TPA) and 2,2'-bipyridine (2, 2'-bipy) entities. The obtained TAPA-BPy-COF is a heterogeneous photocatalyst and can efficiently catalyze the oxidative coupling of thiols to disulfides.

View Article and Find Full Text PDF

Nanomedicines are extensively used in cancer therapy. Covalent organic frameworks (COFs) are crystalline organic porous materials with several benefits for cancer therapy, including porosity, design flexibility, functionalizability, and biocompatibility. This review examines the use of COFs in cancer therapy from the perspective of reticular chemistry and function-oriented materials design.

View Article and Find Full Text PDF

2-Aminobenzothiazoles are widely used in the fields of pharmaceuticals and pesticides. Herein, we report a metal-free protocol for the preparation of 2-aminobenzothiazoles by a covalent organic framework (COF) catalyzed tandem reaction. In the presence of catalytic amount of phenanthroline-decorated COF (Phen-COF), a variety of 2-aminobenzothiazoles are obtained in excellent yields by the cross-coupling of 2-iodoanilines with isothiocyanates at room temperature in water.

View Article and Find Full Text PDF

Radiotherapy is inevitably accompanied by some degree of radiation resistance, which leads to local recurrence and even therapeutic failure. To overcome this limitation, herein, we report the room-temperature synthesis of an iodine- and ferrocene-loaded covalent organic framework (COF) nanozyme, termed , for the enhancement of radiotherapeutic efficacy in the treatment of radioresistant esophageal cancer. The iodine atoms on the COF framework not only exerted a direct effect on radiotherapy, increasing its efficacy by increasing X-ray absorption, but also promoted the radiolysis of water, which increased the production of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Developing efficient integrated diagnosis and treatment agents based on fuel-free self-movement nanomotors remains challenging in antitumor therapy. In this study, a covalent organic framework (COF)-based biomimetic nanomotor composed of polypyrrole (PPy) core, porphyrin-COF shell, and HCT116 cancer cell membrane coating is reported. Under near-infrared (NIR) light irradiation, the obtained mPPy@COF-Por can overcome Brownian motion and achieves directional motion through self-thermophoretic force generated from the PPy core.

View Article and Find Full Text PDF

Efficient enzyme immobilization systems offer a promising approach for improving enzyme stability and recyclability, reducing enzyme contamination in products, and expanding the applications of enzymes in the biomedical field. Covalent organic frameworks (COFs) possess high surface areas, ordered channels, optional building blocks, highly tunable porosity, stable mechanical properties, and abundant functional groups, making them ideal candidates for enzyme immobilization. Various COF-enzyme composites have been successfully synthesized, with performances that surpass those of free enzymes in numerous ways.

View Article and Find Full Text PDF

Herein, we report an indocyanine green (ICG)-decorated and glucose oxidase (GOx)-loaded nanoscale composite COF material a stepwise post-synthetic modification. The obtained GOx@COF-ICG can achieve synergistic inhibition of intracellular heat defense systems through starvation therapy to enhance photothermal therapy of tumors.

View Article and Find Full Text PDF

Herein, we report the first reactive oxygen species (ROS)-responsive dithioketal-linked covalent organic framework (COF) for synergetic chemotherapy and photodynamic therapy (PDT) of cancer. The singlet oxygen (O)-responsive COF dissociation and DC_AC50 drug release complement and reinforce each other to allow an efficient combination of PDT and chemotherapy.

View Article and Find Full Text PDF

Metal-free radiosensitizers, particularly iodine, have shown promise in enhancing radiotherapy due to their suitable X-ray absorption capacities and negligible biotoxicities. However, conventional iodine compounds have very short circulating half-lives and are not retained in tumors very well, which significantly limits their applications. Covalent organic frameworks (COFs) are highly biocompatible crystalline organic porous materials that are flourishing in nanomedicine but have not been developed for radiosensitization applications.

View Article and Find Full Text PDF

Multicomponent reactions (MCRs), as a powerful one-pot combinatorial synthesis tool, have been recently applied to the synthesis of covalent organic frameworks (COFs). Compared with the thermally driven MCRs, the photocatalytic MCR-based COF synthesis has not yet been investigated. Herein, we first report the construction of COFs by a photocatalytic multicomponent reaction.

View Article and Find Full Text PDF

Stimulus-responsive biodegradable nanocarriers with tumor-selective targeted drug delivery are critical for cancer therapy. Herein, we report for the first time a redox-responsive disulfide-linked porphyrin covalent organic framework (COF) that can be nanocrystallized by glutathione (GSH)-triggered biodegradation. After loading 5-fluorouracil (5-Fu), the generated nanoscale COF-based multifunctional nanoagent can be further effectively dissociated by endogenous GSH in tumor cells, releasing 5-Fu efficiently to achieve selective chemotherapy on tumor cells.

View Article and Find Full Text PDF

A fully sp-carbon conjugated COF (Py-FTP-COF) was designed and synthesized, exhibiting excellent hydrogen evolution rate of 5.22 mmol g h. More importantly, hydrogenation of nitroarenes under visible-light irradiation without any additional hydrogen source was successfully accomplished for the first time over COF-based materials.

View Article and Find Full Text PDF

Multicomponent reactions (MCRs) combine at least three reactants to afford the desired product in a highly atom-economic way and are therefore viewed as efficient one-pot combinatorial synthesis tools allowing one to significantly boost molecular complexity and diversity. Nowadays, MCRs are no longer confined to organic synthesis and have found applications in materials chemistry. In particular, MCRs can be used to prepare covalent organic frameworks (COFs), which are crystalline porous materials assembled from organic monomers and exhibit a broad range of properties and applications.

View Article and Find Full Text PDF

Two COFs (BT-COF1 and BT-COF2) with isomeric configuration were reported. Compared with BT-COF1, BT-COF2 with the narrower bandgap, smaller resistance and more evident charge transfer property exhibits superior catalytic performance in the photooxidation of sulfides.

View Article and Find Full Text PDF

Biothiols, including glutathione (GSH) and cysteine, are important reductants that maintain intracellular redox homeostasis. Recent studies have demonstrated that cysteine deprivation is a more effective antitumor strategy than GSH depletion. However, the lack of highly chemoselective and tumor-specific cysteine-consuming reagents limits the practical application of cysteine deprivation.

View Article and Find Full Text PDF