This study investigated the effects of peptide apelin-12 (H-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe-OH, A12) and its novel structural analog (H-(N(α)Me)Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-OH, AI) on myocardial antioxidant enzyme activities, lipid peroxidation, and reactive oxygen species formation in ex vivo and in vivo models of myocardial ischemia/reperfusion (I/R) injury. Isolated working rat hearts were subjected to global ischemia and reperfusion. Infusion of 140 μM A12 or AI before global ischemia improved cardiac function recovery; increased the activity of Cu,Zn superoxide dismutase (Cu,Zn SOD), catalase (CAT), and glutathione peroxidase (GSH-Px); decreased malondialdehyde (MDA) content in reperfused heart; and reduced the formation of hydroxyl radical adduct of the spin trap 5,5-dimethyl-1-pyrroline-N-oxide in the myocardial effluent during early reperfusion compared with these indices in control.
View Article and Find Full Text PDFApelin-12 (A-12) peptide was synthesized by automated solid phase method and purified by reverse phase HPLC. Its homogeneity and structure were confirmed by HPLC, (1)H-NMR spectroscopy, and mass spectroscopy. Acute myocardial infarction was induced by 40-min occlusion of the left coronary artery with subsequent 60-min reperfusion in narcotized Wistar rats.
View Article and Find Full Text PDF