Publications by authors named "Yu A Nashchekina"

We compared the capability of human fibroblasts to populate porous polycaprolactone (PCL) scaffolds modified during fabrication with surface-active agents Triton Х-100 (type 1 scaffold) and polyvinylpyrrolidone (type 2 scaffold). The mean fiber diameter in both scaffolds was almost the same: 3.90±2.

View Article and Find Full Text PDF

Bone marrow mesenchymal stromal cells are multipotent and can differentiate into cells of various tissues, which determines their high importance for clinical application. We performed an in vitro study of the osteogenic potential of mesenchymal stromal cells cultured on intact polylactide scaffolds or scaffolds modified with collagen I or fibrin. Scanning electron microscopy showed that the cells formed osteogenic nodules or osteogenic nodules on both intact and fibrin-modified polylactide scaffolds.

View Article and Find Full Text PDF

We studied the possibility of seeding bone marrow-derived stromal cells onto polylactic acid-based scaffolds fabricated by electrospinning and solution blow spinning technologies. The cells were applied to the scaffolds by dynamic seeding and scaffolds were then cultured in Petri dishes in culture medium for 3 days. Cell migration to the Petri dish surface was noted only for scaffolds fabricated by electrospinning technology, but DAPI staining confirmed the presence of cells in both scaffolds.

View Article and Find Full Text PDF

Objective: Hyaluronic acid represents one of the major components of the extracellular environment. The main challenge remains in the ability to deliver these molecules noninvasively across the skin barrier, which can be overcome by the reduction in size to an extent that allows these molecules to pass across the skin barrier. The aim of this study was to measure the penetration and bioavailability of low molecular weight hyaluronic acid to cross an epidermal barrier model.

View Article and Find Full Text PDF

Collagen I gels with protein concentrations of 1, 2, and 3.5 mg/ml were prepared and embedded in a porous polylactide scaffold to reduce their contraction. Concentration of the gel did not affect its degradation.

View Article and Find Full Text PDF