Publications by authors named "Ysaias J Alvarado"

The enzyme acetylcholinesterase (AChE) plays a crucial role in the termination of nerve impulses by hydrolyzing the neurotransmitter acetylcholine (ACh). The inhibition of AChE has emerged as a promising therapeutic approach for the management of neurological disorders such as Lewy body dementia and Alzheimer's disease. The potential of various compounds as AChE inhibitors was investigated.

View Article and Find Full Text PDF

Bacteriocins, a class of molecules produced by bacteria, exhibit potent antimicrobial properties, including antiviral activities. The urgent need for treatments against SARS-CoV-2 has proposed bacteriocins such as enterocin DD14 (EntDD14) as potential therapeutic agents. However, the mechanism of macromolecular interaction of EntDD14 for the inhibition of SARS-CoV-2 is not yet fully understood, and its efficacy against variants like JN.

View Article and Find Full Text PDF

Anthocyanins are colored water-soluble plant pigments. Upon consumption, anthocyanins are quickly absorbed and can penetrate the blood-brain barrier (BBB). Research based on population studies suggests that including anthocyanin-rich sources in the diet lowers the risk of neurodegenerative diseases.

View Article and Find Full Text PDF

Recent reports have suggested that the susceptibility of cells to SARS-CoV-2 infection can be influenced by various proteins that potentially act as receptors for the virus. To investigate this further, we conducted simulations of viral dynamics using different cellular systems (Vero E6, HeLa, HEK293, and CaLu3) in the presence and absence of drugs (anthelmintic, ARBs, anticoagulant, serine protease inhibitor, antimalarials, and NSAID) that have been shown to impact cellular recognition by the spike protein based on experimental data. Our simulations revealed that the susceptibility of the simulated cell systems to SARS-CoV-2 infection was similar across all tested systems.

View Article and Find Full Text PDF

is a bacterial genus with some saprophytic species from land and others associated with opportunistic infections in humans and animals. Factors such as pathogenicity or metabolic aspects have been related to CRISPR-Cas, and in silico studies into it have focused more on the clinical and non-environmental setting. This work aimed to perform an in silico analysis of the CRISPR-Cas systems present in genomes.

View Article and Find Full Text PDF

The coupling of Cas9 and its inhibitor AcrIIC3, both from the bacterium Neisseria meningitidis (Nme), form a homodimer of the (NmeCas9/AcrIIC3) type. This coupling was studied to assess the impact of their interaction with the crowders in the following environments: (1) homogeneous crowded, (2) heterogeneous, and (3) microheterogeneous cytoplasmic. For this, statistical thermodynamic models based on the scaled particle theory (SPT) were used, considering the attractive and repulsive protein-crowders contributions and the stability of the formation of spherocylindrical homodimers and the effects of changes in the size of spherical dimers were estimated.

View Article and Find Full Text PDF

We have studied the nonlinear absorptive and dispersive responses considering a molecular system consisting of two-levels, where aspects of the vibrational internal structure and intramolecular coupling are inserted, in addition to the considerations of interaction with the thermal reservoir. The Born-Oppenheimer electronic energy curve for this molecular model consists of two-intercrossing harmonic oscillator potentials with minima displaced in energy and nuclear coordinate. The results obtained show how these optical responses are sensitive to explicit considerations of both intramolecular coupling and the presence of the solvent through their stochastic interaction.

View Article and Find Full Text PDF

ClpXP complex is an ATP-dependent mitochondrial matrix protease that binds, unfolds, translocates, and subsequently degrades specific protein substrates. Its mechanisms of operation are still being debated, and several have been proposed, including the sequential translocation of two residues (SC/2R), six residues (SC/6R), and even long-pass probabilistic models. Therefore, it has been suggested to employ biophysical-computational approaches that can determine the kinetics and thermodynamics of the translocation.

View Article and Find Full Text PDF

The COVID-19 pandemic has accelerated the study of drugs, most notably ivermectin and more recently Paxlovid (PF-07321332) which is in phase III clinical trials with experimental data showing covalent binding to the viral protease M. Theoretical developments of catalytic site-directed docking support thermodynamically feasible non-covalent binding to M. Here we show that Paxlovid binds non-covalently at regions other than the catalytic sites with energies stronger than reported and at the same binding site as the ivermectin B1a homologue, all through theoretical methodologies, including blind docking.

View Article and Find Full Text PDF

Cellular susceptibility to SARS-CoV-2 infection in the respiratory tract has been associated with the ability of the virus to interact with potential receptors on the host membrane. We have modeled viral dynamics by simulating various cellular systems and artificial conditions, including macromolecular crowding, based on experimental and transcriptomic data to infer parameters associated with viral growth and predict cell susceptibility. We have accomplished this based on the type, number and level of expression of the angiotensin-converting enzyme 2 (ACE2), transmembrane serine 2 (TMPRSS2), basigin2 (CD147), FURIN protease, neuropilin 1 (NRP1) or other less studied candidate receptors such as heat shock protein A5 (HSPA5) and angiotensin II receptor type 2 (AGTR2).

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has accelerated the study of existing drugs. The mixture of homologs called ivermectin (avermectin-B1a [HB1a] + avermectin-B1b [HB1b]) has shown antiviral activity against SARS-CoV-2 in vitro. However, there are few reports on the behavior of each homolog.

View Article and Find Full Text PDF

The COVID-19 pandemic has accelerated the study of the potential of multi-target drugs (MTDs). The mixture of homologues called ivermectin (avermectin-B1a + avermectin-B1b) has been shown to be a MTD with potential antiviral activity against SARS-CoV-2 . However, there are few reports on the effect of each homologue on the flexibility and stiffness of proteins associated with COVID-19, described as ivermectin targets.

View Article and Find Full Text PDF

The effect of the presence of glucose and sucrose on the nonintrinsic contribution to partial molar volume ⟨Θ⟩ of bovine serum albumin (BSA) is determined by means of static and dynamic electronic polarizability measurements. For that aim, a combined strategy based on high-resolution refractometry, high exactitude densitometry, and synchronous fluorescence spectroscopy is applied. Both static and dynamic mean electronic molecular polarizability values are found to be sensitive to the presence of glucose.

View Article and Find Full Text PDF

In the present study, we introduce novel 3D protein descriptors based on the bilinear algebraic form in the ℝ(n) space on the coulombic matrix. For the calculation of these descriptors, macromolecular vectors belonging to ℝ(n) space, whose components represent certain amino acid side-chain properties, were used as weighting schemes. Generalization approaches for the calculation of inter-amino acidic residue spatial distances based on Minkowski metrics are proposed.

View Article and Find Full Text PDF

The preferential solvation of thiophene- and furan-2-carboxaldehyde phenylhydrazone derivatives in DMSO-water and DMSO-n-octanol mixtures has been studied using visible absorption spectroscopy with a previous characterization of the electronic transitions by Time-Dependent Density Functional Theory (TDDFT) and solvatochromic study in several solvents with different hydrogen-bond donor capacity. The results indicate that the phenylhydrazones are preferentially solvated by clusters of DMSO-water existing in the solvent mixture and the dielectric enrichment as preferential solvation mechanism was discarded. A relation between local DMSO concentration with nitro groups and the electronegativity of the heteroatom of the five-membered ring was found.

View Article and Find Full Text PDF

A new set of nucleotide-based bio-macromolecular descriptors are presented. This novel approach to bio-macromolecular design from a linear algebra point of view is relevant to nucleic acids quantitative structure-activity relationship (QSAR) studies. These bio-macromolecular indices are based on the calculus of bilinear maps on Re(n)[b(mk)(x (m),y (m)):Re(n) x Re(n)-->Re] in canonical basis.

View Article and Find Full Text PDF

Predictive quantitative structure-activity relationship (QSAR) models of anabolic and androgenic activities for the testosterone and dihydrotestosterone steroid analogues were obtained by means of multiple linear regression using quantum and physicochemical molecular descriptors (MD) as well as a genetic algorithm for the selection of the best subset of variables. Quantitative models found for describing the anabolic (androgenic) activity are significant from a statistical point of view: R(2) of 0.84 (0.

View Article and Find Full Text PDF

The solvent effect on the position of the carbonyl vibrational stretching of acetylferrocene in aprotic media was studied in this work. The solvent-induced shifts in this organometallic compound were interpreted in terms of the alternative reaction field model(SCRF-MO) proposed by Kolling. In contrast to the established trends for carbonyl groups in organic systems, the results suggest that the continuum models for the reaction field are not adequate and that the influence of dipolarity-polarizability described by an inhomogeneous coupling function theta(epsilon )L(n(2)) that assumes optical dielectric saturation is responsible for the carbonyl band shift and, there is empirical evidence that the effect of field-induced intermolecular interaction on band shift, interpreted in terms of the van der Waals forces from the solvent, have a important contribution to this phenomena.

View Article and Find Full Text PDF

The concept of atom-based quadratic indices is extended to a series of molecular descriptors (MDs) (both total and local) based on adjacency between edges. The kth edge-adjacency matrix (E ( k )) denotes the matrix of bond-based quadratic indices (non-stochastic) with respect to the canonical basis set. The kth "stochastic" edge-adjacency matrix, ES ( k ), is here proposed as a new molecular representation easily calculated from E ( k ).

View Article and Find Full Text PDF

Existing Trichomonas vaginalis therapies are out of reach for most trichomoniasis people in developing countries and, where available, they are limited by their toxicity (mainly in pregnant women) and their cost. New antitrichomonal agents are needed to combat emerging metronidazole-resistant trichomoniasis and reduce the side effects associated with currently available drugs. Toward this end, atom-based bilinear indices, a new TOMOCOMD-CARDD molecular descriptor, and linear discriminant analysis (LDA) were used to discover novel, potent, and non-toxic lead trichomonacidal chemicals.

View Article and Find Full Text PDF