Publications by authors named "Yow K Tham"

We previously reported that plasmalogens, a class of phospholipids, were decreased in a setting of dilated cardiomyopathy (DCM). Plasmalogen levels can be modulated via a dietary supplement called alkylglycerols (AG) which has demonstrated benefits in some disease settings. However, its therapeutic potential in DCM remained unknown.

View Article and Find Full Text PDF

Dysregulation of estrogen receptor alpha (ERα) has been linked with increased metabolic and cardiovascular disease risk. Here, we generate and characterize cardiomyocyte-specific ERα knockout (ERαHKO) mice to assess the role of ERα in the heart. The most striking phenotype was obesity in female ERαHKO but not male ERαHKO mice.

View Article and Find Full Text PDF

The insulin-like growth factor 1 receptor (IGF1R) and phosphoinositide 3-kinase p110α (PI3K) are critical regulators of exercise-induced physiological cardiac hypertrophy and provide protection in experimental models of pathological remodeling and heart failure. Forkhead box class O1 (FoxO1) is a transcription factor that regulates cardiomyocyte hypertrophy downstream of IGF1R/PI3K activation in vitro, but its role in physiological hypertrophy in vivo was unknown. We generated cardiomyocyte-specific FoxO1 knockout (cKO) mice and assessed the phenotype under basal conditions and settings of physiological hypertrophy induced by ) swim training or ) cardiac-specific transgenic expression of constitutively active PI3K (caPI3K).

View Article and Find Full Text PDF

The incidence of atrial fibrillation (AF) is higher in patients with diabetes. The goal of this study was to assess if the addition of plasma lipids to traditional risk factors could improve the ability to detect and predict future AF in patients with type 2 diabetes. Logistic regression models were used to identify lipids associated with AF or future AF from plasma lipids ( = 316) measured from participants in the ADVANCE trial ( = 3,772).

View Article and Find Full Text PDF

Exercise-induced heart growth provides protection against cardiovascular disease, whereas disease-induced heart growth leads to heart failure. These distinct forms of growth are associated with different molecular profiles (e.g.

View Article and Find Full Text PDF

We previously showed that medium chain acyl-coenzyme A dehydrogenase (MCAD, key regulator of fatty acid oxidation) is positively modulated in the heart by the cardioprotective kinase, phosphoinositide 3-kinase (PI3K(p110α)). Disturbances in cardiac metabolism are a feature of heart failure (HF) patients and targeting metabolic defects is considered a potential therapeutic approach. The specific role of MCAD in the adult heart is unknown.

View Article and Find Full Text PDF

Cardiac myocyte membranes contain lipids which remodel dramatically in response to heart growth and remodeling. Lipid species have both structural and functional roles. Physiological and pathological cardiac remodeling have very distinct phenotypes, and the identification of molecular differences represent avenues for therapeutic interventions.

View Article and Find Full Text PDF

Key Points: MicroRNA (miRNA)-based therapies are in development for numerous diseases, including heart disease. Currently, very limited basic information is available on the regulation of specific miRNAs in male and female hearts in settings of disease. The identification of sex-specific miRNA signatures has implications for translation into the clinic and suggests the need for customised therapy.

View Article and Find Full Text PDF

Expression of miR-154 is upregulated in the diseased heart and was previously shown to be upregulated in the lungs of patients with pulmonary fibrosis. However, the role of miR-154 in a model of sustained pressure overload-induced cardiac hypertrophy and fibrosis had not been assessed. To examine the role of miR-154 in the diseased heart, adult male mice were subjected to transverse aortic constriction for four weeks, and echocardiography was performed to confirm left ventricular hypertrophy and cardiac dysfunction.

View Article and Find Full Text PDF

The onset of heart failure is typically preceded by cardiac hypertrophy, a response of the heart to increased workload, a cardiac insult such as a heart attack or genetic mutation. Cardiac hypertrophy is usually characterized by an increase in cardiomyocyte size and thickening of ventricular walls. Initially, such growth is an adaptive response to maintain cardiac function; however, in settings of sustained stress and as time progresses, these changes become maladaptive and the heart ultimately fails.

View Article and Find Full Text PDF

Heart failure (HF) and atrial fibrillation (AF) share common risk factors, frequently coexist and are associated with high mortality. Treatment of HF with AF represents a major unmet need. Here we show that a small molecule, BGP-15, improves cardiac function and reduces arrhythmic episodes in two independent mouse models, which progressively develop HF and AF.

View Article and Find Full Text PDF

Expression of microRNA-652 (miR-652) increases in the diseased heart, decreases in a setting of cardioprotection, and is inversely correlated with heart function. The aim of this study was to assess the therapeutic potential of inhibiting miR-652 in a mouse model with established pathological hypertrophy and cardiac dysfunction due to pressure overload. Mice were subjected to a sham operation or transverse aortic constriction (TAC) for 4 wk to induce hypertrophy and cardiac dysfunction, followed by administration of a locked nucleic acid (LNA)-antimiR-652 (miR-652 inhibitor) or LNA control.

View Article and Find Full Text PDF

Therapeutic inhibition of the miR-34 family (miR-34a,-b,-c), or miR-34a alone, have emerged as promising strategies for the treatment of cardiac pathology. However, before advancing these approaches further for potential entry into the clinic, a more comprehensive assessment of the therapeutic potential of inhibiting miR-34a is required for two key reasons. First, miR-34a has ∼40% fewer predicted targets than the miR-34 family.

View Article and Find Full Text PDF

MicroRNAs are dysregulated in a setting of heart disease and have emerged as promising therapeutic targets. MicroRNA-34 family members (miR-34a, -34b, and -34c) are up-regulated in the heart in response to stress. In this study, we assessed whether inhibition of the miR-34 family using an s.

View Article and Find Full Text PDF

Background: Numerous molecular and biochemical changes have been linked with the cardioprotective effects of exercise, including increases in antioxidant enzymes, heat shock proteins, and regulators of cardiac myocyte proliferation. However, a master regulator of exercise-induced protection has yet to be identified. Here, we assess whether phosphoinositide 3-kinase (PI3K) p110α is essential for mediating exercise-induced cardioprotection, and if so, whether its activation independent of exercise can restore function of the failing heart.

View Article and Find Full Text PDF