Purpose: To develop a mass spectrometry imaging (MSI) based workflow for extracting m/z values related to putative protein biomarkers and using these for reliable tumor classification.
Experimental Design: Given a list of putative breast and ovarian cancer biomarker proteins, a set of related m/z values are extracted from heterogeneous MSI datasets derived from formalin-fixed paraffin-embedded tissue material. Based on these features, a linear discriminant analysis classification model is trained to discriminate the two tumor types.
Biochim Biophys Acta Proteins Proteom
July 2017
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) shows a high potential for applications in histopathological diagnosis, and in particular for supporting tumor typing and subtyping. The development of such applications requires the extraction of spectral fingerprints that are relevant for the given tissue and the identification of biomarkers associated with these spectral patterns. We propose a novel data analysis method based on the extraction of characteristic spectral patterns (CSPs) that allow automated generation of classification models for spectral data.
View Article and Find Full Text PDF