Publications by authors named "Youying Mu"

The size of floral organs is closely related to the successful reproduction of plants, and corolla size is, to some extent, indicative of the size of floral organs. Petals are considered to be homologous to leaves, so we also attempted to estimate the area of a single petal using the method that is typically employed for estimating single leaf area (i.e.

View Article and Find Full Text PDF

The concept of a geometric series (GS) plays an important role in mathematics. However, it has been neglected in describing biological size series. Herein, we show that a GS describes the nonreproductive (perianth) parts of the flowers of four Magnoliaceae species and two Rosaceae species and the leaves of 60 Alangium chinense and 60 Shibataea chinensis shoots.

View Article and Find Full Text PDF

The "leafing intensity premium" hypothesis proposes that leaf size results from natural selection acting on different leafing intensities, i.e., the number of leaves per unit shoot volume or mass.

View Article and Find Full Text PDF

Previous studies have validated a performance equation (PE) and its generalized version (GPE) in describing the rotated and right-shifted Lorenz curves of organ size (e.g., leaf area and fruit volume) distributions of herbaceous plants.

View Article and Find Full Text PDF

Background And Aims: Leaf area (A) is a crucial indicator of the photosynthetic capacity of plants. The Montgomery equation (ME), which hypothesizes that A is proportional to the product of leaf length (L) and width (W), is a valid tool for non-destructively measuring A for many broadleaved plants. At present, the methods used to compute L and W for the ME can be broadly divided into two kinds: using computer recognition and measuring manually.

View Article and Find Full Text PDF