This study aimed to explore PTPN2 expression levels in Hypopharyngeal Squamous Cell Carcinoma (HPSCC) tissues and their relationship with the clinical characteristics and prognosis of HPSCC patients. PTPN2, a protein tyrosine phosphatase, has recently emerged as a promising target for cancer immunotherapy, and in many previous studies, PTPN2 may have a significant role in the growth, differentiation, metabolism and immune response of head and neck malignant tumors. In this study, PTPN2 expression in Head and Neck Squamous Cell Carcinoma (HNSCC) and other cancer tissues was analyzed using datasets derived from the Sangerbox database.
View Article and Find Full Text PDFBackground: Epilepsy affects nearly 50 million people worldwide. Previous studies have indicated the neuroprotective effects of statin on several neuropathological conditions. However, it is very much unknown whether fluvastatin was able to alter the seizure types related to neuronal excitability and progression mediated by NMDA receptor activation, and the mechanisms involved in these actions are not completely understood so far.
View Article and Find Full Text PDFThis study examines the relationship between E-mini S&P 500 futures' crash risk and Bitcoin futures' returns and volatility using data from 2017 to 2021. While E-mini S&P 500's crash risk doesn't significantly influence Bitcoin returns, it correlates with its volatility, especially during events like the COVID-19 pandemic and U.S.
View Article and Find Full Text PDFSolid-state light-emitting electrochemical cells (LECs) have several advantages, such as low-voltage operation, compatibility with inert metal electrodes, large-area flexible substrates, and simple solution-processable device architectures. However, most of the studies on saturated red LECs show low or moderate device efficiencies (external quantum efficiency (EQE) <3.3 %).
View Article and Find Full Text PDFSolid-state near-infrared (NIR) light-emitting devices have recently received considerable attention as NIR light sources that can penetrate deep into human tissue and are suitable for bioimaging and labeling. In addition, solid-state NIR light-emitting electrochemical cells (LECs) have shown several promising advantages over NIR organic light-emitting devices (OLEDs). However, among the reported NIR LECs based on ionic transition-metal complexes (iTMCs), there is currently no iridium-based LEC that displays NIR electroluminescence (EL) peaks near to or above 800 nm.
View Article and Find Full Text PDF