Publications by authors named "Youwen Fang"

Opioids are the most widely used drugs for long-term pain management, but their use is limited by the development of antinociceptive tolerance. The present study investigated the role of ceramide production through acid sphingomyelinase (ASM) activation in the periaqueductal gray region, a brain region implicated in opioid analgesia and tolerance. Morphine treatment was found, using immunohistochemistry, to increase ASM expression and intracellular ceramide in the periaqueductal gray 30 min after an acute injection (10 mg/kg).

View Article and Find Full Text PDF

Bile acids are important regulatory molecules that can activate specific nuclear receptors and cell signaling pathways in the liver and gastrointestinal tract. In the current study, the chronic bile fistula (CBF) rat model and primary rat hepatocytes (PRH) were used to study the regulation of gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase) and the gene encoding short heterodimeric partner (SHP) by taurocholate (TCA). The intestinal infusion of TCA into the CBF rat rapidly (1h) activated the AKT (approximately 9-fold) and ERK1/2 (3- to 5-fold) signaling pathways, downregulated (approximately 50%, 30 min) the mRNA levels of PEPCK and G-6-Pase, and induced (14-fold in 3 h) SHP mRNA.

View Article and Find Full Text PDF

The regulation of glycogen synthase activity by bile acids in primary hepatocytes and in the intact liver was investigated. Bile acids (deoxycholic acid, DCA; taurocholic acid, TCA) activated AKT and glycogen synthase (GS) in primary rat hepatocytes. Incubation with a phosphatidyl inositol-3 kinase inhibitor or expression of dominant-negative AKT in primary rat hepatocytes abolished activation of AKT and GS by DCA and TCA.

View Article and Find Full Text PDF

Treatment of human immunodeficiency virus (HIV)-infected patients with HIV protease inhibitors (PIs) has been associated with serious lipid disturbances. However, the incidence and degree of impaired lipid metabolism observed in the clinic vary considerably between individual HIV PIs. Our previous studies demonstrated that HIV PIs differ in their ability to increase the levels of transcriptionally active sterol regulatory element-binding proteins (SREBPs), activate the unfolded protein response (UPR), induce apoptosis, and promote foam cell formation in macrophages.

View Article and Find Full Text PDF

Several studies have argued that G-protein-coupled receptors (GPCR) have the capacity to promote activation of receptor tyrosine kinases. The current studies were performed to examine the regulation of the extracellular regulated kinase (ERK)1/2 and AKT pathways by conjugated and unconjugated bile acids in primary hepatocytes. Deoxycholic acid (DCA), chenodeoxycholic acid (CDCA), taurodeoxycholic acid (TDCA), glycodeoxycholic acid (GDCA), taurochenodeoxycholic acid (TCDCA), glycochenodeoxycholic acid (GCDCA), taurocholic acid (TCA), glycocholic acid (GCA), and tauroursodeoxycholic acid (TUDCA) all activated ERK1/2 in primary rat hepatocytes that was abolished by inhibition of ERBB1, and significantly reduced by ROS quenching agents.

View Article and Find Full Text PDF

Previous studies have demonstrated in hepatocytes that deoxycholic acid (DCA) promotes inactivation of protein tyrosine phosphatases (PTPases) and activation of ERBB1 and the extracellular-regulated kinase (ERK) 1/2 pathway. The present studies have determined the biochemical mechanism(s) through which these events occur. DCA and taurodeoxycholic acid (TDCA) (100 micromol/L) caused activation of ERBB1, insulin receptor, and the ERK1/2 and AKT pathways in primary rodent hepatocytes.

View Article and Find Full Text PDF

Previously, we demonstrated that deoxycholic acid (DCA)-induced ERK1/2 and AKT signaling in primary hepatocytes is a protective response. In the present study, we examined the regulation of the phosphatidylinositol 3 (PI3) kinase/AKT/glycogen synthase (kinase) 3 (GSK3)/glycogen synthase (GS) pathway by bile acids. In primary hepatocytes, DCA activated ERBB1 (the epidermal growth factor receptor), ERBB2, and the insulin receptor, but not the insulin-like growth factor 1 (IGF-1) receptor.

View Article and Find Full Text PDF

Previously, we have demonstrated that deoxycholic acid (DCA)-induced signaling of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in primary hepatocytes is a protective response. In the present study, we examined the roles of the ERK and c-Jun NH(2)-terminal kinase (JNK) pathways, and downstream transcription factors, in the survival response of hepatocytes. DCA caused activation of the ERK1/2 and JNK1/2 pathways.

View Article and Find Full Text PDF

Background: The hepatitis B virus X gene has three in-frame start codons encoding the pX, AUG2 and AUG3 proteins. The AUG2 and AUG3 genes are 5'-truncated in respect to the full-length pX gene; however, all three genes terminate at the same stop codon. The activity of pX as an oncogene is well characterized; however, less is known about the AUG2 and AUG3 proteins.

View Article and Find Full Text PDF