Publications by authors named "Youtian Cui"

Nature's two redox cofactors, nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), are held at different reduction potentials, driving catabolism and anabolism in opposite directions. In biomanufacturing, there is a need to flexibly control redox reaction direction decoupled from catabolism and anabolism. We established nicotinamide mononucleotide (NMN) as a noncanonical cofactor orthogonal to NAD(P).

View Article and Find Full Text PDF

When grapes are exposed to wildfire smoke, certain smoke-related volatile phenols (VPs) can be absorbed into the fruit, where they can be then converted into volatile-phenol (VP) glycosides through glycosylation. These volatile-phenol glycosides can be particularly problematic from a winemaking standpoint as they can be hydrolyzed, releasing volatile phenols, which can contribute to smoke-related off-flavors. Current methods for quantitating these volatile-phenol glycosides present several challenges, including the requirement of expensive capital equipment, limited accuracy due to the molecular complexity of the glycosides, and the utilization of harsh reagents.

View Article and Find Full Text PDF

Natural metabolism relies on chemical compartmentalization of two redox cofactors, NAD and NADP, to orchestrate life-essential redox reaction directions. However, in whole cells the reliance on these canonical cofactors limits flexible control of redox reaction direction as these reactions are permanently tied to catabolism or anabolism. In cell-free systems, NADP is too expensive in large scale.

View Article and Find Full Text PDF

Noncanonical cofactor biomimetics (NCBs) such as nicotinamide mononucleotide (NMN) provide enhanced scalability for biomanufacturing. However, engineering enzymes to accept NCBs is difficult. Here, we establish a growth selection platform to evolve enzymes to utilize NMN-based reducing power.

View Article and Find Full Text PDF

Noncanonical redox cofactors are attractive low-cost alternatives to nicotinamide adenine dinucleotide (phosphate) (NAD(P)) in biotransformation. However, engineering enzymes to utilize them is challenging. Here, we present a high-throughput directed evolution platform which couples cell growth to the in vivo cycling of a noncanonical cofactor, nicotinamide mononucleotide (NMN).

View Article and Find Full Text PDF

Noncanonical cofactors such as nicotinamide mononucleotide (NMN) supplant the electron-transfer functionality of the natural cofactors, NAD(P), at a lower cost in cell-free biomanufacturing and enable orthogonal electron delivery in whole-cell metabolic engineering. Here, we redesign the high-flux Embden-Meyerhof-Parnas (EMP) glycolytic pathway to generate NMN-based reducing power, by engineering glyceraldehyde-3-phosphate dehydrogenase ( GapN) to utilize NMN. Through iterative rounds of rational design, we discover the variant GapN Penta (P179K-F153S-S330R-I234E-G210Q) with high NMN-dependent activity and GapN Ortho (P179K-F153S-S330R-I234E-G214E) with ~3.

View Article and Find Full Text PDF

Background: Klebsiella pneumoniae contains an endogenous isobutanol synthesis pathway. The ipdC gene annotated as an indole-3-pyruvate decarboxylase (Kp-IpdC), was identified to catalyze the formation of isobutyraldehyde from 2-ketoisovalerate.

Results: Compared with 2-ketoisovalerate decarboxylase from Lactococcus lactis (KivD), a decarboxylase commonly used in artificial isobutanol synthesis pathways, Kp-IpdC has an 2.

View Article and Find Full Text PDF

To complement established rational and evolutionary protein design approaches, significant efforts are being made to utilize computational modeling and the diversity of naturally occurring protein sequences. Here, we combine structural biology, genomic mining, and computational modeling to identify structural features critical to aldehyde deformylating oxygenases (ADOs), an enzyme family that has significant implications in synthetic biology and chemoenzymatic synthesis. Through these efforts, we discovered latent ADO-like function across the ferritin-like superfamily in various species of Bacteria and Archaea.

View Article and Find Full Text PDF

Background: A major problem in the orange industry is 'delayed' bitterness, which is caused by limonin, a bitter compound developing from its non-bitter precursor limonoate A-ring lactone (LARL) during and after extraction of orange juice. The glucosidation of LARL by limonoid UDP-glucosyltransferase (LGT) to form non-bitter glycosyl-limonin during orange maturation has been demonstrated as a natural way to debitter by preventing the formation of limonin.

Result: Here, the debittering potential of heterogeneously expressed glucosyltransferase, maltose-binding protein (MBP) fused to cuGT from Citrus unishiu Marc (MBP-cuGT), which was previously regarded as LGT, was evaluated.

View Article and Find Full Text PDF

Biological production of chemicals often requires the use of cellular cofactors, such as nicotinamide adenine dinucleotide phosphate (NADP). These cofactors are expensive to use in vitro and difficult to control in vivo. We demonstrate the development of a noncanonical redox cofactor system based on nicotinamide mononucleotide (NMN).

View Article and Find Full Text PDF

Metallochaperones are metal-binding proteins designed to deliver the appropriate metal to a target protein. The metal is usually transferred between different proteins. In this study, we discovered that metal was transferred between the same subunit of a mutant nitrile hydratase (NHase).

View Article and Find Full Text PDF

Nitrile hydratase (NHase), which catalyzes the hydration of nitriles to amides, is the key enzyme for the production of amides in industries. However, the poor stability of this enzyme under the reaction conditions is a drawback of its industrial application. In this study, we aimed to improve the stability of NHase (PpNHase) from Pseudomonas putida NRRL-18668 using a homologous protein fragment swapping strategy.

View Article and Find Full Text PDF

Self-assembling amphipathic peptides (SAPs) are the peptides that can spontaneously assemble into ordered nanostructures. It has been reported that the attachment of SAPs to the N- or C-terminus of an enzyme can benefit the thermo-stability of the enzyme. Here, we discovered that the thermo-stability and product tolerance of nitrile hydratase (NHase) were enhanced by fusing with two of the SAPs (EAK16 and ELK16).

View Article and Find Full Text PDF

A self-subunit swapping chaperone is crucial for cobalt incorporation into nitrile hydratase. However, further information about its structural features is not available. The flexibility and positive charge of the C-terminal domain of the self-subunit swapping chaperone (P14K) of nitrile hydratase from Pseudomonas putida NRRL-18668 play an important role in cobalt incorporation.

View Article and Find Full Text PDF

Background: Activators of Nitrile hydratase (NHase) are essential for functional NHase biosynthesis. However, the activator P14K in P. putida is difficult to heterogeneously express, which retards the clarification of the mechanism of P14K involved in the maturation of NHase.

View Article and Find Full Text PDF

Self-subunit swapping is one of the post-translational maturation of the cobalt-containing nitrile hydratase (Co-NHase) family of enzymes. All of these NHases possess a gene organization of <β-subunit> <α-subunit> , which allows the activator protein to easily form a mediatory complex with the α-subunit of the NHase after translation. Here, we discovered that the incorporation of cobalt into another type of Co-NHase, with a gene organization of <α-subunit> <β-subunit> , was also dependent on self-subunit swapping.

View Article and Find Full Text PDF