Direct conversion from terahertz photon to charge current is a key phenomenon for terahertz photonics. Quantum geometrical description of optical processes in crystalline solids predicts existence of field-unbiased dc photocurrent arising from terahertz-light generation of magnetic excitations in multiferroics, potentially leading to fast and energy-efficient terahertz devices. Here, we demonstrate the dc charge current generation from terahertz magnetic excitations in multiferroic perovskite manganites with spin-driven ferroelectricity, while keeping an insulating state with no free carrier.
View Article and Find Full Text PDFWeyl semimetals resulting from either inversion () or time-reversal () symmetry breaking have been revealed to show the record-breaking large optical response due to intense Berry curvature of Weyl-node pairs. Different classes of Weyl semimetals with both and symmetry breaking potentially exhibit optical magnetoelectric (ME) responses, which are essentially distinct from the previously observed optical responses in conventional Weyl semimetals, leading to the versatile functions such as directional dependence for light propagation and gyrotropic effects. However, such optical ME phenomena of (semi)metallic systems have remained elusive so far.
View Article and Find Full Text PDFThe magnetic skyrmion is a spin-swirling topological object characterized by its nontrivial winding number, holding potential for next-generation spintronic devices. While optical readout has become increasingly important towards the high integration and ultrafast operation of those devices, the optical response of skyrmions has remained elusive. Here, we show the magneto-optical Kerr effect (MOKE) induced by the skyrmion formation, i.
View Article and Find Full Text PDFSignificanceThe quantum-mechanical geometric phase of electrons provides various phenomena such as the dissipationless photocurrent generation through the shift current mechanism. So far, the photocurrent generations are limited to above or near the band-gap photon energy, which contradicts the increasing demand of the low-energy photonic functionality. We demonstrate the photocurrent through the optical phonon excitations in ferroelectric BaTiO by using the terahertz light with photon energy far below the band gap.
View Article and Find Full Text PDFControlling the chiral degree of freedom in matter has long been an important issue for many fields of science. The spin-spiral order, which exhibits a strong magnetoelectric coupling, gives rise to chirality irrespective of the atomic arrangement of matter. Here, we report the resonantly enhanced natural optical activity on the electrically active magnetic excitation, that is, electromagnon, in multiferroic cupric oxide.
View Article and Find Full Text PDFElectrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics.
View Article and Find Full Text PDFWe investigated nuclear wave packet dynamics in the excited state of KI F centers at 10 K using time-resolved luminescence spectroscopy. Observed transient spectrum is divided into oscillatory and non-oscillatory components. The former lasts over 11 ps without appreciable damping and is attributed to the oscillation of the wave packet consisting mainly of the A(1g) mode around the center.
View Article and Find Full Text PDF