Publications by authors named "Youssef Siblini"

Article Synopsis
  • - The study investigates the complex clinical and metabolic effects associated with inborn errors of cobalamin metabolism, particularly focusing on cblC and epi-cblC cases, to better understand their variability and underlying mechanisms.
  • - Researchers utilized metabolomic, genomic, proteomic, and post-translational modification analyses on fibroblasts from cblC and cblG patient cases, revealing notable disruptions in metabolic pathways such as the urea cycle and mitochondrial energy production.
  • - Findings highlight significant changes in enzyme expression and activity, which could explain clinical symptoms like neurological issues and developmental delays in patients; further research is needed to confirm these connections.
View Article and Find Full Text PDF

Background: MTR gene encodes the cytoplasmic enzyme methionine synthase, which plays a pivotal role in the methionine cycle of one-carbon metabolism. This cycle holds a significant importance in generating S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), the respective universal methyl donor and end-product of epigenetic transmethylation reactions. cblG type of inherited disorders of vitamin B12 metabolism due to mutations in MTR gene exhibits a wide spectrum of symptoms, including a retinopathy unresponsive to conventional therapies.

View Article and Find Full Text PDF

Stem cells are a population of undifferentiated cells with self-renewal and differentiation capacities. Normal and cancer stem cells share similar characteristics in relation to their stemness properties. One-carbon metabolism (OCM), a network of interconnected reactions, plays an important role in this dependence through its role in the endogenous synthesis of methionine and S-adenosylmethionine (SAM), the universal donor of methyl groups in eukaryotic cells.

View Article and Find Full Text PDF

Background: epi-cblC is a recently discovered inherited disorder of intracellular vitamin B metabolism associating hematological, neurological, and cardiometabolic outcomes. It is produced by an epimutation at the promoter common to CCDC163P and MMACHC, which results from an aberrant antisense transcription due to splicing mutations in the antisense PRDX1 gene neighboring MMACHC. We studied whether the aberrant transcription produced a second epimutation by encompassing the CpG island of the TESK2 gene neighboring CCDC163P.

View Article and Find Full Text PDF

Epigenetic diseases can be produced by a stable alteration, called an epimutation, in DNA methylation, in which epigenome alterations are directly involved in the underlying molecular mechanisms of the disease. This review focuses on the epigenetics of two inherited metabolic diseases, epi-cblC, an inherited metabolic disorder of cobalamin (vitamin B) metabolism, and alpha-thalassemia type α-ZF, an inherited disorder of α2-globin synthesis, with a particular interest in the role of aberrant antisense transcription of flanking genes in the generation of epimutations in CpG islands of gene promoters. In both disorders, the epimutation is triggered by an aberrant antisense transcription through the promoter, which produces an H3K36me3 histone mark involved in the recruitment of DNA methyltransferases.

View Article and Find Full Text PDF

Background: Although radiation therapy represents a core cancer treatment modality, its efficacy is hampered by radioresistance. The effect of ionizing radiations (IRs) is well known regarding their ability to induce genetic alterations; however, their impact on the epigenome landscape in cancer, notably at the CpG dinucleotide resolution, remains to be further deciphered. In addition, no evidence is available regarding the effect of IRs on the DNA methylome profile according to the methionine dependency phenotype, which represents a hallmark of metabolic adaptation in cancer.

View Article and Find Full Text PDF

Methionine-dependency is a common feature of cancer cells, which cannot proliferate without constant inputs of exogenous methionine even in the presence of its precursor, homocysteine. The endogenous synthesis of methionine is catalyzed by methionine synthase, which transfers the methyl group of 5-methyltetrahydrofolate (5-methylTHF) to homocysteine in the presence of vitamin B12 (cobalamin, cbl). Diverse mechanisms can produce it, including somatic mutations, aberrant DNA methylation (epimutations) and altered expression of genes.

View Article and Find Full Text PDF