This study investigated the impact of gastro-intestinal fluid volume and bile salt (BS) concentration on the dissolution of carbamazepine (CBZ) immediate release (IR) 100 mg tablets and to integrate these in vitro biorelevant dissolution profiles into physiologically based pharmacokinetic modelling (PBPK) in pediatric and adult populations to determine the biopredictive dissolution profile. Dissolution profiles of CBZ IR tablets (100 mg) were generated in 50-900 mL biorelevant adult fasted state simulated gastric and intestinal fluid (Ad-FaSSGF and Ad-FaSSIF), also in three alternative compositions of biorelevant pediatric FaSSGF and FaSSIF medias at 200 mL. This study found that CBZ dissolution was poorly sensitive to changes in the composition of the biorelevant media, where dissimilar dissolution (F2 = 46.
View Article and Find Full Text PDFThe objective of this study was to assess how solubility and dissolution profile comparisons under different pH conditions can be used to predict gastric pH-mediated drug-drug interaction (DDI) potential. We collected information for new molecular entities (NMEs) approved from 2003 to 2019 by the U.S.
View Article and Find Full Text PDFGenerally, bioequivalence (BE) studies of drug products for pediatric patients are conducted in adults due to ethical reasons. Given the lack of direct BE assessment in pediatric populations, the aim of this work is to develop a database of BE and relative bioavailability (relative BA) studies conducted in pediatric populations and to enable the identification of risk factors associated with certain drug substances or products that may lead to failed BE or different pharmacokinetic (PK) parameters in relative BA studies in pediatrics. A literature search from 1965 to 2020 was conducted in PubMed, Cochrane Library, and Google Scholar to identify BE studies conducted in pediatric populations and relative BA studies conducted in pediatric populations.
View Article and Find Full Text PDFBioequivalence (BE) studies support the approval and clinical use of both new drug and generic drug products. Virtual BE studies have been conducted using physiologically based pharmacokinetic absorption models (PBPK AMs) to aid the evaluations of generic drug products. The aim of the current study is to determine the dissolution boundary for maintaining BE between the test and reference oseltamivir phosphate (OP) drug products using the PBPK AM-based virtual BE studies in adults and pediatrics.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFA major characteristic of Alzheimer's disease (AD) is the accumulation of misfolded amyloid-β (Aβ) peptide. Several studies linked AD with type 2 diabetes due to similarities between Aβ and human amylin. This study investigates the effect of amylin and pramlintide on Aβ pathogenesis and the predisposing molecular mechanism(s) behind the observed effects in TgSwDI mouse, a cerebral amyloid angiopathy (CAA) and AD model.
View Article and Find Full Text PDFIn Alzheimer's disease (AD) the blood-brain barrier (BBB) is compromised, thus therapeutic targeting of the BBB to enhance its integrity and function could be a unique approach to treat, slow or hold the progression of AD. Recently, we have developed an in vitro high-throughput screening assay to screen for compounds that increase the integrity of a cell-based BBB model. Results from primary screen identified multiple hit compounds that enhanced the monolayer integrity.
View Article and Find Full Text PDFExtra-virgin olive oil (EVOO) has several health promoting effects. Evidence have shown that EVOO attenuates the pathology of amyloid-β (Aβ) and improves cognitive function in experimental animal models, suggesting it's potential to protect and reduce the risk of developing Alzheimer's disease (AD). Available studies have linked this beneficial effect to oleocanthal, one of the active components in EVOO.
View Article and Find Full Text PDFFindings from Alzheimer's disease (AD) mouse models showed that amylin treatment improved AD pathology and enhanced amyloid-β (Aβ) brain to blood clearance; however, the mechanism was not investigated. Using the Tg2576 AD mouse model, a single intraperitoneal injection of amylin significantly increased Aβ serum levels, and the effect was abolished by AC253, an amylin receptor antagonist, suggesting that amylin effect could be mediated by its receptor. Subsequent mechanistic studies showed amylin enhanced Aβ transport across a cell-based model of the blood-brain barrier (BBB), an effect that was abolished when the amylin receptor was inhibited by two amylin antagonists and by siRNA knockdown of amylin receptor Ramp3.
View Article and Find Full Text PDFAmyloid-β (Aβ) pathology is known to promote chronic inflammatory responses in the brain. It was thought previously that Aβ is only associated with Alzheimer's disease and Down syndrome. However, studies have shown its involvement in many other neurological disorders.
View Article and Find Full Text PDF