Purpose: The value of integrating clinical variables, radiomics, and tumor-derived cell-free DNA (cfDNA) for the prediction of survival and response to chemoradiation of patients with resectable esophageal adenocarcinoma is not yet known. Our aim was to investigate if radiomics and cfDNA metrics combined with clinical variables can improve personalized predictions.
Methods And Materials: A cohort of 111 patients with resectable esophageal adenocarcinoma from 2 centers treated with neoadjuvant chemoradiation therapy was used for exploratory retrospective analyses.
Background Handcrafted radiomics and deep learning (DL) models individually achieve good performance in lesion classification (benign vs malignant) on contrast-enhanced mammography (CEM) images. Purpose To develop a comprehensive machine learning tool able to fully automatically identify, segment, and classify breast lesions on the basis of CEM images in recall patients. Materials and Methods CEM images and clinical data were retrospectively collected between 2013 and 2018 for 1601 recall patients at Maastricht UMC+ and 283 patients at Gustave Roussy Institute for external validation.
View Article and Find Full Text PDF(1) Background: The main aim was to develop a prototype application that would serve as an open-source repository for a curated subset of predictive and prognostic models regarding oncology, and provide a user-friendly interface for the included models to allow online calculation. The focus of the application is on providing physicians and health professionals with patient-specific information regarding treatment plans, survival rates, and side effects for different expected treatments. (2) Methods: The primarily used models were the ones developed by our research group in the past.
View Article and Find Full Text PDFHandcrafted radiomics features (HRFs) are quantitative features extracted from medical images to decode biological information to improve clinical decision making. Despite the potential of the field, limitations have been identified. The most important identified limitation, currently, is the sensitivity of HRF to variations in image acquisition and reconstruction parameters.
View Article and Find Full Text PDFHandcrafted radiomic features (HRFs) are quantitative imaging features extracted from regions of interest on medical images which can be correlated with clinical outcomes and biologic characteristics. While HRFs have been used to train predictive and prognostic models, their reproducibility has been reported to be affected by variations in scan acquisition and reconstruction parameters, even within the same imaging vendor. In this work, we evaluated the reproducibility of HRFs across the arterial and portal venous phases of contrast-enhanced computed tomography images depicting hepatocellular carcinomas, as well as the potential of ComBat harmonization to correct for this difference.
View Article and Find Full Text PDF