Publications by authors named "Yousif Al Mashhadany"

The urgent need for efficient and accurate automated screening tools for COVID-19 detection has led to research efforts exploring various approaches. In this study, we present pioneering research on COVID-19 detection using a hybrid model that combines convolutional neural networks (CNN) with a bi-directional long short-term memory (Bi-LSTM) network, in conjunction with fiber optic data for SARS-CoV-2 Immunoglobulin G (IgG) antibodies. Our research introduces a comprehensive data preprocessing pipeline and evaluates the performance of four different deep learning (DL) algorithms: CNN, CNN-RNN, BiLSTM, and CNN-BiLSTM, in classifying samples as positive or negative for the COVID-19 virus.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) poses a critical global One Health concern, ensuing from unintentional and continuous exposure to antibiotics, as well as challenges in accurate contagion diagnostics. Addressing AMR requires a strategic approach that emphasizes early stage prevention through screening in clinical, environmental, farming, and livestock settings to identify nonvulnerable antimicrobial agents and the associated genes. Conventional AMR diagnostics, like antibiotic susceptibility testing, possess drawbacks, including high costs, time-consuming processes, and significant manpower requirements, underscoring the need for intelligent, prompt, and on-site diagnostic techniques.

View Article and Find Full Text PDF

Advanced sensor technology, especially those that incorporate artificial intelligence (AI), has been recognized as increasingly important in various contemporary applications, including navigation, automation, water under imaging, environmental monitoring, and robotics. Data-driven decision-making and higher efficiency have enabled more excellent infrastructure thanks to integrating AI with sensors. The agricultural sector is one such area that has seen significant promise from this technology using the Internet of Things (IoT) capabilities.

View Article and Find Full Text PDF

Comprehending the morphological disparities between SARS-CoV-2 and SARS-CoV viruses can shed light on the underlying mechanisms of infection and facilitate the development of effective diagnostic tools and treatments. Hence, this study aimed to conduct a comprehensive analysis and comparative assessment of the morphology of SARS-CoV-2 and SARS-CoV using transmission electron microscopy (TEM) images. The dataset encompassed 519 isolated SARS-CoV-2 images obtained from patients in Italy (INMI) and 248 isolated SARS-CoV images from patients in Germany (Frankfurt).

View Article and Find Full Text PDF

Constantly mutating SARS-CoV-2 is a global concern resulting in COVID-19 infectious waves from time to time in different regions, challenging present-day diagnostics and therapeutics. Early-stage point-of-care diagnostic (POC) biosensors are a crucial vector for the timely management of morbidity and mortalities caused due to COVID-19. The state-of-the-art SARS-CoV-2 biosensors depend upon developing a single platform for its diverse variants/biomarkers, enabling precise detection and monitoring.

View Article and Find Full Text PDF

The worldwide outbreak of COVID-19 disease was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2). The existence of spike proteins, which allow these viruses to infect host cells, is one of the distinctive biological traits of various prior viruses. As a result, the process by which these viruses infect people is largely dependent on spike proteins.

View Article and Find Full Text PDF

The SARS-CoV-2 virus is responsible for the rapid global spread of the COVID-19 disease. As a result, it is critical to understand and collect primary data on the virus, infection epidemiology, and treatment. Despite the speed with which the virus was detected, studies of its cell biology and architecture at the ultrastructural level are still in their infancy.

View Article and Find Full Text PDF

The COVID-19, MERS-CoV, and SARS-CoV are hazardous epidemics that have resulted in many deaths which caused a worldwide debate. Despite control efforts, SARS-CoV-2 continues to spread, and the fast spread of this highly infectious illness has posed a grave threat to global health. The effect of the SARS-CoV-2 mutation, on the other hand, has been characterized by worrying variations that modify viral characteristics in response to the changing resistance profile of the human population.

View Article and Find Full Text PDF

Life was once normal before the first announcement of COVID-19's first case in Wuhan, China, and what was slowly spreading became an overnight worldwide pandemic. Ever since the virus spread at the end of 2019, it has been morphing and rapidly adapting to human nature changes which cause difficult conundrums in the efforts of fighting it. Thus, researchers were steered to investigate the virus in order to contain the outbreak considering its novelty and there being no known cure.

View Article and Find Full Text PDF

Understanding environmental information is necessary for functions correlated with human activities to improve healthcare quality and reduce ecological risk. Tapered optical fibers reduce some limitations of such devices and can be considerably more responsive to fluorescence and absorption properties changes. Data have been collected from reliable sources such as Science Direct, IEEE Xplore, Scopus, Web of Science, PubMed, and Google Scholar.

View Article and Find Full Text PDF

The propagation of viruses has become a global threat as proven through the coronavirus disease (COVID-19) pandemic. Therefore, the quick detection of viral diseases and infections could be necessary. This study aims to develop a framework for virus diagnoses based on integrating photonics technology with artificial intelligence to enhance healthcare in public areas, marketplaces, hospitals, and airfields due to the distinct spectral signatures from lasers' effectiveness in the classification and monitoring of viruses.

View Article and Find Full Text PDF

Timely detection and diagnosis are essentially needed to guide outbreak measures and infection control. It is vital to improve healthcare quality in public places, markets, schools and airports and provide useful insights into the technological environment and help researchers acknowledge the choices and gaps available in this field. In this narrative review, the detection of coronavirus disease 2019 (COVID-19) technologies is summarized and discussed with a comparison between them from several aspects to arrive at an accurate decision on the feasibility of applying the best of these techniques in the biosensors that operate using laser detection technology.

View Article and Find Full Text PDF

Foot drop is a disease caused mainly by muscle paralysis, which incapacitates the nerves generating the impulses that control feet in a heel strike. The incapacity may stem from lesions that affect the brain, the spinal cord, or peripheral nerves. The foot becomes dorsiflexed, affecting normal walking.

View Article and Find Full Text PDF