Publications by authors named "Yousheng Ouyang"

Enterobacter cloacae is a nosocomial pathogen. The E. cloacae strain BF-17, with a high capacity for biofilm formation, was screened and identified from industrially contaminated samples, carried out in our laboratory.

View Article and Find Full Text PDF

Isothiazolones are used as preservatives in various modern industrial products. Although microorganisms that exhibit resistance towards these biocides have been identified, the underlying resistance mechanisms are still unclear. Therefore, we investigated the resistance properties of the following Burkholderia cepacia strains to Kathon (a representative of isothiazolones): a wild-type (WT) strain; a laboratory resistance strain (BC-IR) induced from WT; and an isolated strain (BC-327) screened from industrial contamination samples.

View Article and Find Full Text PDF

Citrobacter sp. is a cause of significant opportunistic nosocomial infection and is frequently found in human and animal feces, soil, and sewage water, and even in industrial waste or putrefaction. Biofilm formation is an important virulence trait of Citrobacter sp.

View Article and Find Full Text PDF

In this work, a novel environmental-friendly waterborne polyurethane/ZnAl-layered double hydroxides/ZnO nanoparticles composite (WPU/ZnAl-LDHs/ZnO) was synthesized via in-situ polymerization. ZnAl-LDHs and ZnAl-LDHs/ZnO were synthesized by refluxing in an oil bath. In order to disperse ZnAl-LDHs/ZnO homogeneously into WPU matrix, ZnAl-LDHs/ZnO was firstly functionalized by isophorone diisocyanate.

View Article and Find Full Text PDF

In order to improve the water-solubility and long-term antibacterial activity of copper nanoparticles (CuNPs), a poly-L-lysine-modified reduced graphene oxide (PLL-rGO) was used as the carrier of CuNPs, and a poly-L-lysine/reduced graphene oxide/copper nanoparticles (PLL-rGO-CuNPs) hybrid was prepared by anchoring the CuNPs on the reduced graphene oxide surface. The novel PLL-rGO-CuNPs hybrid was characterized and the antibacterial activity of it on gram-negative Escherichia coli and Gram-positive Staphylococcus aureus was tested. Such a hybrid showed additively antibacterial activity, and the CuNPs on PLL-rGO were more stable than those on polyvinyl pyrrolidone, resulting in long-term additively antibacterial effect.

View Article and Find Full Text PDF

Essential oils are aromatic oily liquids obtained from some aromatic plant materials. Certain essential oils such as citronella oil contain antifungal activity, but the antifungal effect is still unknown. In this study, we explored the antifungal effect of citronella oil with Aspergillus niger ATCC 16404.

View Article and Find Full Text PDF

A novel kind of environmentally friendly nanocomposites, waterborne polyurethane (WBPU)/Cu(II)-loaded hydroxyapatite (CuHAp), with improved physical properties and antibacterial activity have been prepared via in-situ polymerization from functionalized CuHAp nanoparticles (CuHAp NPs). The interaction of the CuHAp NPs with isophorone diisocyanate to form the functionalized CuHAp NPs containing isocyanate groups (CuHAp-g-NCO) has been studied. The microstructure and particle distribution of the nanocomposites were observed using scanning electron microscopy.

View Article and Find Full Text PDF

The antibacterial activity and mechanism of silver nanoparticles (Ag-NPs) on Staphylococcus aureus ATCC 6538P were investigated in this study. The experiment results showed the minimum bactericidal concentration (MBC) of Ag-NPs to S. aureus was 20 μg/ml.

View Article and Find Full Text PDF

This article reviews the recent studies on H2O2 adaptation of Saccharomyces cerevisiae. When the cell exposed in the H2O2 sub-lethal doses, the plasma membrane permeability decreased, meanwhile the plasma membrane fluidity is minished. These changes resulted in a gradient across the plasma membrane, which conferring a higher resistance to oxidative stress.

View Article and Find Full Text PDF

The antibacterial activity and acting mechanism of silver nanoparticles (SNPs) on Escherichia coli ATCC 8739 were investigated in this study by analyzing the growth, permeability, and morphology of the bacterial cells following treatment with SNPs. The experimental results indicated 10 microg/ml SNPs could completely inhibit the growth of 10(7) cfu/ml E. coli cells in liquid Mueller-Hinton medium.

View Article and Find Full Text PDF

The bacterial antioxidant defense system, including oxyR; soxRS; perR and ohrR, is employed to cope with oxidative stress induced by respiration or environmental assaults. oxyR, encompasses the gene encoding OxyR and some other genes and operons regulated by it, has captured the highest attention among these regulons. To date, members of oxyR regulon have been confirmed to participate in many physiological processes including antioxidant defense, repression of spontaneous mutagenesis, virulence, iron metabolism and out membrane protein phase-variation.

View Article and Find Full Text PDF