Specific industrial or research applications necessitate specialized displacement measurement conditions, thereby driving researchers to innovate sensors based on novel operating principles. One such challenging condition is the prevalence of strong electromagnetic waves, which precludes using any sensor with a metallic structure or one that operates on electrical measurement principles. Additionally, space constraints in applications requiring multidimensional displacement measurements mandate the development of sensors capable of measuring displacements simultaneously in multiple directions.
View Article and Find Full Text PDFA new method for manipulating fluid movement using sound waves is presented in this paper. The method relies on acoustic streaming near the free surface of the fluid in a channel with an open top. The sound waves are modulated in phase using acoustic phase holography, which creates a periodic phase pattern from 0 to 2π along a straight path on a target plane.
View Article and Find Full Text PDFThe present study introduces a multi-degree-of-freedom (MDOF) ultrasonic motor, which is capable of driving a spherical rotor using spiral wire stators and a piezoelectric stack actuator. Wire stators and piezoelectric stack actuators enable the proposed motor to be smaller and simpler, lower in power consumption, and have different modes at different frequencies. In this motor, two wire stators are used to drive the spherical rotor and rotate it in different directions.
View Article and Find Full Text PDFConverting the frequency is needed in many fields of advanced technology. "Electric circuits" or "coupled motors and generators" are usually used for frequency conversion. This article introduces a new piezoelectric frequency converter (PFC), using an idea similar to piezoelectric transformers (PT).
View Article and Find Full Text PDFThe Dielectrophoresis (DEP) phenomenon has been widely used for cell separation in recent years. The experimental measurement of the DEP force is one of the concerns of scientists. This research presents a novel method for more accurately measuring the DEP force.
View Article and Find Full Text PDFThe presented paper fundamentally investigates the influence of different electron transfer mechanisms, various metal-based electrodes, and a static magnetic field on the overall performance of microfluidic microbial fuel cells (MFCs) for the first time to improve the generated bioelectricity. To do so, as the anode of microfluidic MFCs, zinc, aluminum, tin, copper, and nickel were thoroughly investigated. Two types of bacteria, Escherichia coli and Shewanella oneidensis MR-1, were used as biocatalysts to compare the different electron transfer mechanisms.
View Article and Find Full Text PDF