ACS Appl Mater Interfaces
May 2023
Wearable electronics is an emerging field in academics and industry, in which electronic devices, such as smartwatches and sensors, are printed or embedded within textiles. The electrical circuits in electronics textile (e-textile) should withstand many cycles of bending and stretching. Direct printing of conductive inks enables the patterning of electrical circuits; however, while using conventional nanoparticle-based inks, printing onto the fabric results in a thin layer of a conductor, which is not sufficiently robust and impairs the reliability required for practical applications.
View Article and Find Full Text PDFMonitoring pupillary size and light-reactivity is a key component of the neurologic assessment in comatose patients after stroke or brain trauma. Currently, pupillary evaluation is performed manually at a frequency often too low to ensure timely alert for irreversible brain damage. We present a novel method for monitoring pupillary size and reactivity through closed eyelids.
View Article and Find Full Text PDFThe use of Cu-formate-2-amino-2-methyl-1-propanol ink and low-pressure plasma for the formation of highly conductive patterns on heat sensitive plastic substrates was studied. It was found that plasma results in decomposition of copper complex to form metallic copper without heating at high temperatures. Ink composition and plasma parameters (predrying conditions, plasma treatment duration, gas type, and flow rate) were optimized to obtain uniform conductive metallic films.
View Article and Find Full Text PDFHighly conductive copper patterns on low-cost flexible substrates are obtained by inkjet printing a metal complex based ink. Upon heating the ink, the soluble complex, which is composed of copper formate and 2-amino-2-methyl-1-propanol, decomposes under nitrogen at 140 °C and is converted to pure metallic copper. The decomposition process of the complex is investigated and a suggested mechanism is presented.
View Article and Find Full Text PDF