HIV-1 persists indefinitely in people living with HIV (PLWH) on antiretroviral therapy (ART). If ART is stopped, the virus rapidly rebounds from long-lived latently infected cells. Using a humanized mouse model of HIV-1 infection and CD4 T cells from PLWH on ART, we investigate whether antagonizing host pro-survival proteins can prime latent cells to die and facilitate HIV-1 clearance.
View Article and Find Full Text PDFIn most people living with HIV (PLWH) on effective antiretroviral therapy (ART), cell-associated viral transcripts are readily detectable in CD4+ T cells despite the absence of viremia. Quantification of HIV RNA species provides insights into the transcriptional activity of proviruses that persist in cells and tissues throughout the body during ART ('HIV reservoir'). One such technique for HIV RNA quantitation, 'HIV transcription profiling', developed in the Yukl laboratory, measures a series of HIV RNA species using droplet digital PCR.
View Article and Find Full Text PDFQuantification of intact proviruses is a critical measurement in HIV cure studies both and . The widely adopted 'intact proviral DNA assay' (IPDA), designed to discriminate and quantify genetically intact HIV proviruses based on detection of two HIV sequence-specific targets, was originally validated using Bio-Rad's droplet digital PCR technology (ddPCR). Despite its advantages, ddPCR is limited in multiplexing capability (two-channel) and is both labor- and time intensive.
View Article and Find Full Text PDFOne strategy to eliminate latently infected cells that persist in people with HIV on antiretroviral therapy is to activate virus transcription and virus production to induce virus or immune-mediated cell death. This is called latency reversal. Despite clear activity of multiple latency reversal agents in vitro, clinical trials of latency-reversing agents have not shown significant reduction in latently infected cells.
View Article and Find Full Text PDFBackground: The COVID-19 pandemic has had an unprecedented impact on global health and the world's economies. Proliferation of virulent and deadly SARS-CoV-2 variants require effective transmission mitigation strategies. Under reasonable environmental conditions, culturable and infectious SARS-CoV-2 can survive on contaminated fomites from hours to months.
View Article and Find Full Text PDFThe rise in coronavirus variants has resulted in surges of the disease across the globe. The mutations in the spike protein on the surface of the virion membrane not only allow for greater transmission but also raise concerns about vaccine effectiveness. Preventing the spread of SARS-CoV-2, its variants, and other viruses from person to person via airborne or surface transmission requires effective inactivation of the virus.
View Article and Find Full Text PDFOlder individuals exhibit a diminished ability to respond to and clear respiratory pathogens and, as such, experience a higher rate of lung infections with a higher mortality rate. It is unclear why respiratory pathogens impact older people disproportionately. Using human lung tissue from donors aged 22-68 years, we assessed how the immune cell landscape in lungs changes throughout life and investigated how these immune cells respond following exposure to influenza virus and SARS-CoV-2, two clinically relevant respiratory viruses.
View Article and Find Full Text PDFIntroduction: HIV latency can be established in vitro following direct infection of a resting CD4+ T cell (pre-activation latency) or infection of an activated CD4+ T cell which then returns to a resting state (post-activation latency). We modified a previously published dual-fluorescent reporter virus seeking to track the establishment and reactivation of pre-activation latency in primary CD4+ T cells.
Methods: A previously published dual-fluorescent reporter virus was modified so that expression of enhanced green fluorescent protein (GFP) was under control of the elongation factor 1 alpha (EF1α) promoter to detect latent infection, and E2 crimson (E2CRM) was under control of the nef promoter to detect productive infection.
Cell Host Microbe
January 2018
Despite the success of antiretroviral therapy (ART), there is currently no HIV cure and treatment is life long. HIV persists during ART due to long-lived and proliferating latently infected CD4+ T cells. One strategy to eliminate latency is to activate virus production using latency reversing agents (LRAs) with the goal of triggering cell death through virus-induced cytolysis or immune-mediated clearance.
View Article and Find Full Text PDF