Publications by authors named "Youru Du"

The dynamics of mixed surfactants in aqueous solution has been studied at a molecular level by nuclear magnetic resonance (NMR) spectroscopy. The line widths and line shapes of the resonance peaks of two types of binary mixed surfactant systems, ionic/nonionic mixed solutions (12-2-12/TX-100, 14-2-14/TX-100, 14-2-14/Brij-35, and SDS/TX-100) and ionic/ionic mixed solutions (12-2-12/TTAB and 14-2-14/TTAB), in the (1)H NMR spectra offered semiquantitative results about the influence of mixing on the surfactant exchange dynamics between monomers in aqueous solution and those in the micelles. The results showed that the exchange rates of the mixed surfactants were enhanced by each other for the three cationic/nonionic mixed solutions, while the exchange rates were lowered by each other for the two cationic/cationic mixed solutions.

View Article and Find Full Text PDF

This article provides a full description of the mixed micelle formation process at a molecular level. The mechanism of mixed micelle formation in binary surfactant aqueous solution systems, ionic/nonionic mixed systems (12-2-12/TX-100, 14-2-14/TX-100, and SDS/TX-100), and ionic/ionic mixed systems (12-2-12/TTAB, 14-2-14/TTAB, and SDS/CTAB), in heavy water solutions was studied by (1)H NMR spectroscopy. The critical micellization concentrations of each individual component in the mixed surfactant solutions were gained by analyzing changes in chemical shift and intensities of resonance peaks.

View Article and Find Full Text PDF

Three kinds of conventional surfactants, namely, two nonionic surfactants [polyethylene glycol (23) lauryl ether (Brij-35) and Triton X-100 (TX-100)], one cationic surfactant [n-tetradecyltrimethyl ammonium bromide (TTAB)], and an anionic surfactant [sodium n-dodecyl sulfate (SDS)}, were mixed into the quaternary ammonium gemini surfactant [C(14)H(29)N(+)(CH(3))(2)](2)(CH(2))(2).2Br(-) (14-2-14) in aqueous solution. The exchange rate constants between 14-2-14 molecules in the mixed micelles and those in the bulk solution were detected using two nuclear magnetic resonance (NMR) methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY).

View Article and Find Full Text PDF

The mechanism of micelle formation of surfactants sodium dodecyl sulfate (SDS), n-hexyldecyltrimethylammonium bromide (CTAB) and Triton X-100 (TX-100) in heavy water solutions was studied by 1H NMR (chemical shift and line shape) and NMR self-diffusion experiments. 1H NMR and self-diffusion experiments of these three surfactants show that their chemical shifts (delta) begin to change and resonance peaks begins to broaden with the increase in concentration significantly below their critical micelle concentrations (cmc's). At the same time, self-diffusion coefficients ( D) of the surfactant molecules decrease simultaneously as their concentrations increase.

View Article and Find Full Text PDF

The exchange kinetics of cationic gemini surfactants of the alkanediyl-alpha-omega-bis(tetradecyldimethylammonium bromide) type, with alkanediyl being 1,2-ethylene, 1,3-propylene, and 1,4-butylene, were investigated by 1H NMR, 2D COSY, and 2D EXSY experiments. In contrast to the conventional surfactants, a second set of well-resolved resonance peaks appeared in the 1H NMR spectra of these surfactants when their concentrations reached their critical concentrations. These two sets of resonance peaks originate from their monomers and micelles, which are proved by the correlation in the 2D COSY experiments and the cross polarization in the 2D NOESY spectra.

View Article and Find Full Text PDF

Two quaternary ammonium Gemini surfactant series, 12-s-12, ([C(12)H(25)N+ (CH(3))(2)](2)(CH(2))(s).(2)Br(-)) and 14-s-14 ([C(14)H(29)N(+)(CH(3))(2)](2)(CH(2))(s).(2)Br(-)), where s = 2, 3, and 4, have been studied by the use of (1)H NMR in aqueous solution at concentrations below their critical micelle concentrations (CMC) at 25 degrees C.

View Article and Find Full Text PDF

(1)H NMR chemical shift, spin-lattice relaxation time, spin-spin relaxation time, self-diffusion coefficient, and two-dimensional nuclear Overhauser enhancement (2D NOESY) measurements have been used to study the nonionic-ionic surfactant mixed micelles. Cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) were used as the ionic surfactants and polyethylene glycol (23) lauryl ether (Brij-35) as the nonionic surfactant. The two systems are both with varying molar ratios of CTAB/Brij-35 (C/B) and SDS/Brij-35 (S/B) ranging from 0.

View Article and Find Full Text PDF

NMR self-diffusion coefficient measurements have been used to study the properties of polyethylene glycol (23) lauryl ether (Brij-35) with cetyltrimethylammonium bromide (CTAB) in the mixed aqueous solutions with different mole fractions of CTAB. By fitting the self-diffusion coefficients to the two-state exchange model, the critical micelle concentrations of the two solutes in the mixed solutions (cmc*1 and cmc*2) were obtained. The critical mixed micelle concentrations (cmc*) were then evaluated by the sum of cmc*1 and cmc*2, which are in good agreement with the results measured by the surface tension method.

View Article and Find Full Text PDF