Publications by authors named "Younseong Song"

Sequencing of messenger RNA (mRNA) found in extracellular vesicles (EVs) in liquid biopsies can provide clinical information such as somatic mutations, resistance profiles and tumor recurrence. Despite this, EV mRNA remains underused due to its low abundance in liquid biopsies, and large sample volumes or specialized techniques for analysis are required. Here we introduce Self-amplified and CRISPR-aided Operation to Profile EVs (SCOPE), a platform for EV mRNA detection.

View Article and Find Full Text PDF

The increasing incidence of serious bacterial keratitis, a sight-threatening condition often exacerbated by inadequate contact lens (CLs) care, highlights the need for innovative protective technology. This study introduces a long-lasting antibacterial, non-cytotoxic, transparent nanocoating for CLs via a solvent-free polymer deposition method, aiming to prevent bacterial keratitis. The nanocoating comprises stacked polymer films, with poly(dimethylaminomethyl styrene-co-ethylene glycol dimethacrylate) (pDE) as a biocompatible, antibacterial layer atop poly(2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane) (pV4D4) as an adhesion-promoting layer.

View Article and Find Full Text PDF

Atopic dermatitis (AD), a prevalent skin condition often complicated by microbial infection, poses a significant challenge in identifying the responsible pathogen for its effective management. However, a reliable, safe tool for pinpointing the source of these infections remains elusive. In this study, a novel on-site pathogen detection that combines chemically functionalized nanotopology with genetic analysis is proposed to capture and analyze pathogens closely associated with severe atopic dermatitis.

View Article and Find Full Text PDF

The ongoing coronavirus disease 2019 (COVID-19) pandemic demands rapid and straightforward diagnostic tools to prevent early-stage viral transmission. Although nasopharyngeal swabs are a widely used patient sample collection method for diagnosing COVID-19, using these samples for diagnosis without RNA extraction increases the risk of obtaining false-positive and -negative results. Thus, multiple purification steps are necessary, which are time-consuming, generate significant waste, and result in substantial sample loss.

View Article and Find Full Text PDF

The recent outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for rapid, user-friendly nucleic acid testing that involves simple but efficient RNA extraction. Here, we present a charge-shifting polyplex as an RNA extraction carrier for advanced diagnosis of infectious viral diseases. The polyplex comprises poly(2-(dimethylamino) ethyl acrylate) (pDMAEA) electrostatically conjugated with RNA.

View Article and Find Full Text PDF

Sensitive and accurate capture, enrichment, and identification of drug-resistant bacteria on human skin are important for early-stage diagnosis and treatment of patients. Herein, we constructed a three-dimensional hierarchically structured polyaniline nanoweb (3D HPN) to capture, enrich, and detect drug-resistant bacteria on-site by rubbing infected skins. These unique hierarchical nanostructures enhance bacteria capture efficiency and help severely deform the surface of the bacteria entrapped on them.

View Article and Find Full Text PDF

Accurate and efficient detection of DNA is crucial for disease diagnosis and health monitoring. The traditional methods for DNA analysis involve multiple steps, including sample preparation, lysis, extraction, amplification, and detection. In this study, we present a one-step elution-free DNA analysis method based on the combination of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated light-up aptamer transcription (CLAT) assay and a DNA-capturing poly(2-dimethylaminomethyl styrene) (pDMAMS)-coated tube.

View Article and Find Full Text PDF

A bacteria-capturing platform is a critical function of accurate, quantitative, and sensitive identification of bacterial pathogens for potential usage in the detection of foodborne diseases. Despite the development of various nanostructures and their surface chemical modification strategies, relative to the principal physical contact propagation of bacterial infections, mechanically robust and nanostructured platforms that are available to capture bacteria remain a significant problem. Here, a three-dimensional (3D) hierarchically structured polyaniline nanoweb film is developed for the efficient capture of bacterial pathogens by hand-touching.

View Article and Find Full Text PDF

An "all-in-one tube" platform is developed, where the genetic analysis involving DNA extraction, amplification, and detection can be performed in a single tube. The all-in-one tube consists of a polymerase chain reaction (PCR) tube in which the inner surface is conformally modified with a tertiary-amine-containing polymer to generate a strong electrostatic interaction with DNA. The all-in-one tube provides high DNA capture efficiency exceeding 80% from Escherichia coli O157: H7 pathogen at a wide range of DNA amount from 0.

View Article and Find Full Text PDF

Effective capture and rapid detection of pathogenic bacteria causing pandemic/epidemic diseases is an important task for global surveillance and prevention of human health threats. Here, we present an advanced approach for the on-site capture and detection of pathogenic bacteria through the combination of hierarchical nanostructures and a nuclease-responsive DNA probe. The specially designed hierarchical nanocilia and network structures on the pillar arrays, termed 3D bacterial capturing nanotopographical trap, exhibit excellent mechanical reliability and rapid (<30 s) and irreversible bacterial capturability.

View Article and Find Full Text PDF

The digital nucleic acid assay is a precise, sensitive, and reproducible method for determining the presence of individual target molecules separated in designated partitions; thus, this technique can be used for the nucleic acid detection. Here, we propose a multifunctional micropattern array capable of isolating individual target molecules into partitions and simultaneous on-site cell lysis to achieve a direct DNA extraction and digitized quantification thereof. The multifunctional micropattern array is fabricated by the deposition of a copolymer film, poly(2-dimethylaminomethyl styrene--hydroxyethyl methacrylate) (pDH), directly on a microfluidic chip surface the photoinitiated chemical vapor deposition process, followed by hydrophobic microcontact printing (μCP) to define each partition for the nucleic acid isolation.

View Article and Find Full Text PDF

Postsurgical intraocular lens (IOL) infection caused by pathogenic bacteria can result in blindness and often requires a secondary operation to replace the contaminated lens. The incorporation of an antibacterial property onto the IOL surface can prevent bacterial infection and postoperative endophthalmitis. This study describes a polymeric nanopillar array (NPA) integrated onto an IOL, which captures and eradicates the bacteria by rupturing the bacterial membrane.

View Article and Find Full Text PDF

Prevention and early detection of bacterial infection caused by foodborne pathogens are the most important task to human society. Although currently available diagnostic technologies have been developed and designed for detection of specific pathogens, suitable capturing tools for the pathogens are rarely studied. In this paper, a new methodology is developed and proposed to realize effective capturing through touchable flexible zinc oxide-based sub-micro pillar arrays through genetic analysis.

View Article and Find Full Text PDF

The current study focuses on developing a system for visually detecting an amplified bacterial (Escherichia coli O157:H7) gene using a heavy metal particle (MP) and functionalized porous sepharose gel. To functionalize DNA-specificity to the MP, an avidin-modified MP was employed in combination with a biotin-conjugated primer. The porous sepharose matrix was functionalized with an amine-reactive group, such as N-hydroxysuccinimide (NHS), to achieve separation upon binding of the amplified gene.

View Article and Find Full Text PDF

Since the increment of the threat to public health caused by foodborne pathogens, researches have been widely studied on developing the miniaturized detection system for the on-site pathogen detection. In the study, we focused on the development of portable, robust, and disposable film-based polymerase chain reaction (PCR) chip containing a multiplex chamber for simultaneous gene amplification. In order to simply fabricate and operate a film-based PCR chip, different kinds of PCR chambers were designed and fabricated using polyethylene terephthalate (PET) and polyvinyl chloride (PVC) adhesive film, in comparison with commercial PCR, which employs a stereotyped system at a bench-top scale.

View Article and Find Full Text PDF

Antibacterial activity is essential and highly demanded in worldwide to prevent potential bacterial infection. Here in this work, we report a new approch for the fabrication of flexible zinc oxide nanopillar arrays (ZG-NPA) film with an efficient antibacterial activity. A flexible NPA film served as a substrate for the rapid formation of ZnO by using ultrasound-assisted method.

View Article and Find Full Text PDF

Flexible and highly ordered nanopillar arrayed electrodes have brought great interest for many electrochemical applications, especially to the biosensors, because of its unique mechanical and topological properties. Herein, we report an advanced method to fabricate highly ordered nanopillar electrodes produced by soft-/photo-lithography and metal evaporation. The highly ordered nanopillar array exhibited the superior electrochemical and mechanical properties in regard with the wide space to response with electrolytes, enabling the sensitive analysis.

View Article and Find Full Text PDF

Preparation of suprastructure assemblies with unique colloidal and optical properties remains challenging. Non-uniform covering of magnetic nanoparticles (NPs) with an external inert Au shell has been attempted to protect the magnetic core against oxidation as well as to produce multifunctional supraparticles (SPs) possessing respective optical and magnetic properties. In this study, a concave Au NP coating was deposited on magnetic nanoparticles (MNPs) with precise control of the shell thickness and roughness through a layer-by-layer (LbL) assisted ionic reduction method termed ion-reducible LbL (IR-LbL) method.

View Article and Find Full Text PDF

Chitosan, produced from chitin, is one of the polymers with promising applications in various fields. However, despite diverse research studies conducted on its biocompatibility, its uses are still limited. The main reason is the degree of deacetylation (DOD), which represents the proportion of deacetylated units in the polymer and is directly correlated with its biocompatibility property.

View Article and Find Full Text PDF