Publications by authors named "Younousse Saidi"

High-throughput RNA sequencing (RNA-seq) has recently become the method of choice to define and analyze transcriptomes. For the model moss Physcomitrella patens, although this method has been used to help analyze specific perturbations, no overall reference dataset has yet been established. In the framework of the Gene Atlas project, the Joint Genome Institute selected P.

View Article and Find Full Text PDF

Dispersal is a key step in land plant life cycles, usually via formation of spores or seeds. Regulation of spore- or seed-germination allows control over the timing of transition from one generation to the next, enabling plant dispersal. A combination of environmental and genetic factors determines when seed germination occurs.

View Article and Find Full Text PDF

Armadillo-related proteins regulate development throughout eukaryotic kingdoms. In the flowering plant Arabidopsis thaliana, Armadillo-related ARABIDILLO proteins promote multicellular root branching. ARABIDILLO homologues exist throughout land plants, including early-diverging species lacking true roots, suggesting that early-evolving ARABIDILLOs had additional biological roles.

View Article and Find Full Text PDF

The heat shock response (HSR) is a highly conserved molecular response to various types of stresses, including heat shock, during which heat-shock proteins (Hsps) are produced to prevent and repair damages in labile proteins and membranes. In cells, protein unfolding in the cytoplasm is thought to directly enable the activation of the heat shock factor 1 (HSF-1), however, recent work supports the activation of the HSR via an increase in the fluidity of specific membrane domains, leading to activation of heat-shock genes. Our findings support the existence of a plasma membrane-dependent mechanism of HSF-1 activation in animal cells, which is initiated by a membrane-associated transient receptor potential vanilloid receptor (TRPV).

View Article and Find Full Text PDF

ARABIDILLO proteins regulate multicellular root development in Arabidopsis thaliana. Conserved ARABIDILLO homologues are present throughout land plants, even in early-evolving plants that do not possess complex root architecture, suggesting that ARABIDILLO genes have additional functions. Here, we have cloned and characterised ARABIDILLO gene homologues from two early-evolving land plants, the bryophyte Physcomitrella patens and the lycophyte Selaginella moellendorffii.

View Article and Find Full Text PDF

Typically at dawn on a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to induce a timely heat shock response (HSR) and accumulate protective heat shock proteins in anticipation of harmful temperatures at mid-day. Here, we found that the cyclic nucleotide gated calcium channel (CNGC) CNGCb gene from Physcomitrella patens and its Arabidopsis thaliana ortholog CNGC2, encode a component of cyclic nucleotide gated Ca(2+) channels that act as the primary thermosensors of land plant cells. Disruption of CNGCb or CNGC2 produced a hyper-thermosensitive phenotype, giving rise to an HSR and acquired thermotolerance at significantly milder heat-priming treatments than in wild-type plants.

View Article and Find Full Text PDF

Glycogen synthase kinase 3 (GSK3) proteins, also known as SHAGGY-like kinases, have many important cell signalling roles in animals, fungi and amoebae. In particular, GSK3s participate in key developmental signalling pathways and also regulate the cytoskeleton. GSK3-encoding genes are also present in all land plants and in algae and protists, raising questions about possible ancestral functions in eukaryotes.

View Article and Find Full Text PDF

Understanding how plants sense and respond to heat stress is central to improve crop tolerance and productivity. Recent findings in Physcomitrella patens demonstrated that the controlled passage of calcium ions across the plasma membrane regulates the heat shock response (HSR). To investigate the effect of membrane lipid composition on the plant HSR, we acclimated P.

View Article and Find Full Text PDF

An accurate assessment of the rising ambient temperature by plant cells is crucial for the timely activation of various molecular defences before the appearance of heat damage. Recent findings have allowed a better understanding of the early cellular events that take place at the beginning of mild temperature rise, to timely express heat-shock proteins (HSPs), which will, in turn, confer thermotolerance to the plant. Here, we discuss the key components of the heat signalling pathway and suggest a model in which a primary sensory role is carried out by the plasma membrane and various secondary messengers, such as Ca(2+) ions, nitric oxide (NO) and hydrogen peroxide (H(2)O(2)).

View Article and Find Full Text PDF

The constitutive Cauliflower Mosaic Virus 35S promoter (CaMV 35S) is widely used as a tool to express recombinant proteins in plants, but with different success. We previously showed that the expression of an F-actin marker, GFP-talin, in Physcomitrella patens using the CaMV 35S promoter failed to homogenously label moss tissues. Here, we show a significant diminution of the GFP fluorescence in dark grown old moss cells and complete lack of labelling in newly differentiated cells.

View Article and Find Full Text PDF

Land plants are prone to strong thermal variations and must therefore sense early moderate temperature increments to induce appropriate cellular defenses, such as molecular chaperones, in anticipation of upcoming noxious temperatures. To investigate how plants perceive mild changes in ambient temperature, we monitored in recombinant lines of the moss Physcomitrella patens the activation of a heat-inducible promoter, the integrity of a thermolabile enzyme, and the fluctuations of cytoplasmic calcium. Mild temperature increments, or isothermal treatments with membrane fluidizers or Hsp90 inhibitors, induced a heat shock response (HSR) that critically depended on a preceding Ca(2+) transient through the plasma membrane.

View Article and Find Full Text PDF

The seven subunit Arp2/3 complex is a highly conserved nucleation factor of actin microfilaments. We have isolated the genomic sequence encoding a putative Arp3a protein of the moss Physcomitrella patens. The disruption of this ARP3A gene by allele replacement has generated loss-of-function mutants displaying a complex developmental phenotype.

View Article and Find Full Text PDF

The ability to detect early molecular responses to various chemicals is central to the understanding of biological impact of pollutants in a context of varying environmental cues. To monitor stress responses in a model plant, we used transgenic moss Physcomitrella patens expressing the beta-glucuronidase reporter (GUS) under the control of the stress-inducible promoter hsp17.3B.

View Article and Find Full Text PDF

* The 'in planta' visualization of F-actin in all cells and in all developmental stages of a plant is a challenging problem. By using the soybean heat inducible Gmhsp17.3B promoter instead of a constitutive promoter, we have been able to label all cells in various developmental stages of the moss Physcomitrella patens, through a precise temperature tuning of the expression of green fluorescent protein (GFP)-talin.

View Article and Find Full Text PDF

The ability to express tightly controlled amounts of endogenous and recombinant proteins in plant cells is an essential tool for research and biotechnology. Here, the inducibility of the soybean heat-shock Gmhsp17.3B promoter was addressed in the moss Physcomitrella patens, using beta-glucuronidase (GUS) and an F-actin marker (GFP-talin) as reporter proteins.

View Article and Find Full Text PDF