Biochem Biophys Res Commun
December 2024
MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a crucial role in regulating gene expression. Dysregulation of miRNAs is associated with various human diseases, including cancer. Accurate quantification of miRNAs in bodily fluids or tissue biopsy samples is essential for their use as biomarkers in tumor diagnosis, yet current methods remain suboptimal.
View Article and Find Full Text PDFReal-time polymerase chain reaction (real-time PCR) is a powerful tool for the precise quantification of nucleic acids in various applications. In cancer management, the monitoring of circulating tumor DNA (ctDNA) from liquid biopsies can provide valuable information for precision care, including treatment selection and monitoring, prognosis, and early detection. However, the rare and heterogeneous nature of ctDNA has made its precise detection and quantification challenging, particularly for ctDNA containing hotspot mutations.
View Article and Find Full Text PDFPurpose: The purpose of this study was to evaluate the antitumor effect of a blocking antibody for EGFR in the cytoplasm of a lung cancer cell line.
Methods & Materials: The A549 and H1299 cell lines were employed to demonstrate differential responses to cetuximab in combination with radiotherapy. Localization of EGFR was detected using confocal microscopy, and radiosensitivity was measured.
Irradiation causes the impaired proliferation of cells lining mucosal membranes. Epidermal growth factor (EGF) facilitates proliferation of various skin cells; however, the wound healing effects of EGF on radiation-damaged cells is less well known. To evaluate the effects of recombinant human EGF (rhEGF) on the proliferation of cells following irradiation, we tested two types of fibroblast cell lines and one keratinocyte cell line.
View Article and Find Full Text PDFA variety of signaling pathways participate in the development of skeletal muscle, but the extracellular cues that regulate such pathways in myofiber formation are not well understood. Neogenin is a receptor for ligands of the netrin and repulsive guidance molecule (RGM) families involved in axon guidance. We reported previously that neogenin promoted myotube formation by C2C12 myoblasts in vitro and that the related protein Cdo (also Cdon) was a potential neogenin coreceptor in myoblasts.
View Article and Find Full Text PDFNeural basic helix-loop-helix transcription factors (bHLHs) control many aspects of neurogenesis, such as proliferation, fate determination, and differentiation. We have previously shown that the promyogenic cell surface receptor Cdo modulates the Cdc42 and p38 mitogen-activated protein kinase (MAPK) pathways via a direct association with two scaffold-type proteins, JLP and Bnip-2, to regulate activities of myogenic bHLH factors and myogenic differentiation. We report here that Cdo uses similar regulatory mechanisms to promote neuronal differentiation.
View Article and Find Full Text PDFThe p38alpha/beta mitogen-activated protein kinase (MAPK) pathway promotes skeletal myogenesis, but the mechanisms by which it is activated during this process are unclear. During myoblast differentiation, the promyogenic cell surface receptor Cdo binds to the p38alpha/beta pathway scaffold protein JLP and, via JLP, p38alpha/beta itself. We report that Cdo also interacts with Bnip-2, a protein that binds the small guanosine triphosphatase (GTPase) Cdc42 and a negative regulator of Cdc42, Cdc42 GTPase-activating protein (GAP).
View Article and Find Full Text PDFMyoblast fusion is fundamental to the development and regeneration of skeletal muscle. To fuse, myoblasts undergo cell-cell recognition and adhesion and merger of membranes between apposing cells. Cell migration must occur in advance of these events to bring myoblasts into proximity, but the factors that regulate myoblast motility are not fully understood.
View Article and Find Full Text PDF