Publications by authors named "Younis Mohammad"

Clozapine is a potent serotonin receptor antagonist and commonly used for the treatment of Schizophrenia. The study aimed to develop and optimize the transdermal matrix patch of clozapine. A 3-level, 3-factor Central Composite Design was applied to examine and validate the impact of various formulation variables, Eudragit, PEG, and oleic acid on in vitro drug release, flux, and tensile strength (TS).

View Article and Find Full Text PDF

Critical care nursing is considered one of the most challenging and demanding fields in nursing. Critical care nurses work in high-stress environments, tending to patients who are experiencing acute illness and necessitate intensive care. Nurses play a crucial role in providing nursing care for critically ill patients, encompassing duties such as assessment, administration of medications, ventilator management, diligent monitoring, and responding to life-saving situations.

View Article and Find Full Text PDF

 Open reduction and internal fixation of distal radius fractures is one of the most common procedures performed in wrist surgery. The use of volar locking plate has gained increasing interest in the past decade. Epiphyseal fixation can be done either with locking screws or smooth locking pegs, with no evidence supporting the use of one rather than the other.

View Article and Find Full Text PDF

This paper presents a tunable multi-threshold micro-electromechanical inertial switch with adjustable threshold capability. The demonstrated device combines the advantages of accelerometers in providing quantitative acceleration measurements and g-threshold switches in saving power when in the inactive state upon experiencing acceleration below the thresholds. The designed proof-of-concept device with two thresholds consists of a cantilever microbeam and two stationary electrodes placed at different positions in the sensing direction.

View Article and Find Full Text PDF

Hertia intermedia is a traditional medicinal plant of Balochistan, used for pain management and stomach problems. Current research work was intended to evaluate the anti-inflammatory and analgesic activities of crude ethanolic extract of H. intermedia.

View Article and Find Full Text PDF

Meloxicam (MEL) is an oxicam derivative with low water solubility that is useful in the treatment of colorectal cancer (CRC) as a COX-2 inhibitor. MEL-loaded HPMC micro particles were fabricated using an oil-in-oil (o/o) emulsion solvent evaporation (ESE) method. FTIR, XRD, particle size analysis, DSC, SEM and in vitro dissolution investigation were utilized to evaluate the produced micro particles physiochemically.

View Article and Find Full Text PDF

Saturation is an intriguing phenomenon that has captured the attention of scientists since the time of Froude when he reported it for ship motion in the mid of the nineteenth century. This work presents the demonstration and a comprehensive study of the nonlinear saturation phenomenon on a compound micromachined structure of U-shape (micro portal frame). The frame is designed and fabricated as a multi-input and multi-output device for actuating the 1st (sway) and 2nd (symmetric) in-plane vibration modes.

View Article and Find Full Text PDF

This work reports highly selective multiple analyte detection by exploiting two different mechanisms; absorption and thermal conductivity using a single MEMS device. To illustrate the concept, we utilize a resonator composed of a clamped-guided arch beam connected to a flexural beam and a T-shaped moveable mass. A finite element model is used to study the mode shapes and mechanical behavior of the device with good agreement reported with the experimental data.

View Article and Find Full Text PDF

The goal of this study is to see how cold plasma affects rabbit bone tissue infected with osteoporosis. The search is divided into three categories: control, infected, and treated. The rabbits were subjected to cold plasma for five minutes in a room with a microwave plasma voltage of "175 V" and a gas flow of "2.

View Article and Find Full Text PDF

Background: Nurses' work environment has apparent implications for maximizing their productivity, satisfaction, and improving patient care.

Objectives: This study aimed to explore the influence of three nursing unit spatial layouts on critical care nurses' satisfaction and walking behavior at a university hospital.

Methods: The research used a comparative design by administering a standardized questionnaire, recording walking steps and distances using pedometers, and tracking nurses' walking behavior.

View Article and Find Full Text PDF

The aim of this study is to demonstrate the effect of particle size on semiconductor properties; artificial intelligence is being used for the research methods. As a result, we picked cadmium sulfide (CdS), which is a unique semiconductor material that is employed in a broad variety of current applications. Given that CdS has distinct electrical and optical characteristics, it may be employed in the production of solar cells, for example.

View Article and Find Full Text PDF

Background: The critical conditions of intensive care patients require providing them with a higher acuity of care. Thus, it is essential to focus on critical care nurses and improve their work environment in a way that maximizes productivity, collaboration, satisfaction, and leads to improved patient care.

Purpose: This study aims to explore the role the workplace layout design play in determining nurses' satisfaction in three intensive care units (ICUs) at a university hospital.

View Article and Find Full Text PDF

We present a highly sensitive Lorentz-force magnetic micro-sensor capable of measuring low field values. The magnetometer consists of a silicon micro-beam sandwiched between two electrodes to electrostatically induce in-plane vibration and to detect the output current. The method is based on measuring the resonance frequency of the micro-beam around the buckling zone to sense out-of-plane magnetic fields.

View Article and Find Full Text PDF

In this research, we investigate the structural behavior, including the snap-through and pull-in instabilities, of in-plane microelectromechanical COSINE-shaped and electrically actuated clamped-clamped micro-beams resonators. The work examines various electrostatic actuation patterns including uniform and non-uniform parallel-plates airgap arrangements, which offer options to actuate the arches in the opposite and same direction of their curvature. The nonlinear equation of motion of a shallow arch is discretized into a reduced-order model based on the Galerkin's expansion method, which is then numerically solved.

View Article and Find Full Text PDF

Critically ill patients usually experience a significant level of pain during rest or during routine care such as turning, wound care, and endotracheal suctioning. Pain assessment is the cornerstone of pain management. Adequate pain assessment and management are major responsibilities of critical care nurses.

View Article and Find Full Text PDF

Nowadays, there is increasing interest in fast, accurate, and highly sensitive smart gas sensors with excellent selectivity boosted by the high demand for environmental safety and healthcare applications. Significant research has been conducted to develop sensors based on novel highly sensitive and selective materials. Computational and experimental studies have been explored in order to identify the key factors in providing the maximum active location for gas molecule adsorption including bandgap tuning through nanostructures, metal/metal oxide catalytic reactions, and nano junction formations.

View Article and Find Full Text PDF

Sleep disturbance is common in patients in the intensive care unit (ICU). Numerous factors can contribute to this. High noise and light levels, nursing interventions and medication administration are major factors.

View Article and Find Full Text PDF

There has been remarkable interest in nanomechanical computing elements that can potentially lead to a new era in computation due to their re-configurability, high integration density, and high switching speed. Here we present a nanomechanical device capable of dynamically performing logic operations (NOR, NOT, XNOR, XOR, and AND). The concept is based on the active tuning of the resonance frequency of a doubly-clamped nanoelectromechanical beam resonator through electro-thermal actuation.

View Article and Find Full Text PDF

We experimentally demonstrate an exploitation of the nonlinear softening, hardening, and veering phenomena (near crossing), where the frequencies of two vibration modes get close to each other, to realize a bandpass filter of sharp roll off from the passband to the stopband. The concept is demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate curvature to form an arch shape.

View Article and Find Full Text PDF

Diosgenin, a promising anticancer steroidal sapogenin, was isolated from Dioscorea deltoidea. Keeping its stereochemistry rich architecture intact, a scheme for the synthesis of novel diosgenin analogues was designed using Cu (I)-catalysed alkyne-azide cycloaddition in order to study their structure-activity relationship. Both diosgenin and its analogues exhibited interesting anti-proliferative effect against four human cancer cell lines viz.

View Article and Find Full Text PDF

We demonstrate a memory device based on the nonlinear dynamics of an in-plane microelectromechanical systems (MEMS) clamped⁻clamped beam resonator, which is deliberately fabricated as a shallow arch. The arch beam is made of silicon, and is electrostatically actuated. The concept relies on the inherent quadratic nonlinearity originating from the arch curvature, which results in a softening behavior that creates hysteresis and co-existing states of motion.

View Article and Find Full Text PDF

Understanding the various mechanisms of nonlinear mode coupling in micro and nano resonators has become an imminent necessity for their successful implementation in practical applications. However, consistent, repeatable, and flexible experimental procedures to produce nonlinear mode coupling are lacking, and hence research into well-controlled experimental conditions is crucial. Here, we demonstrate well-controlled and repeatable experiments to study nonlinear mode coupling among micro and nano beam resonators.

View Article and Find Full Text PDF

The objective of this paper is to demonstrate the integration of a MOF thin film on electrostatically actuated microstructures to realize a switch triggered by gas and a sensing algorithm based on amplitude tracking. The devices are based on the nonlinear response of micromachined clamped-clamped beams. The microbeams are coated with a metal-organic framework (MOF), namely HKUST-1, to achieve high sensitivity.

View Article and Find Full Text PDF

Using partial electrodes and a multifrequency electrical source, we present a large-bandwidth, large-amplitude clamped-clamped microbeam resonator excited near the higher order modes of vibration. We analytically and experimentally investigate the nonlinear dynamics of the microbeam under a two-source harmonic excitation. The first-frequency source is swept around the first three modes of vibration, whereas the second source frequency remains fixed.

View Article and Find Full Text PDF

The present research study deals with an electrically actuated MEMS device. An experimental investigation is performed, via frequency sweeps in a neighbourhood of the first natural frequency. Resonant behavior is explored, with special attention devoted to jump and pull-in dynamics.

View Article and Find Full Text PDF