Artif Intell Med
August 2024
In this work, we present CodeAR, a medical time series generative model for electronic health record (EHR) synthesis. CodeAR employs autoregressive modeling on discrete tokens obtained using a vector quantized-variational autoencoder (VQ-VAE), which addresses key challenges of accurate distribution modeling and patient privacy preservation in the medical domain. The proposed model is trained with next-token prediction instead of a regression problem for more accurate distribution modeling, where the autoregressive property of CodeAR is useful to capture the inherent causality in time series data.
View Article and Find Full Text PDF