The purification of indoor air is a crucial application of photocatalysis, emphasizing the urgent need for more efficient photocatalytic systems. While photocatalytic oxidation of volatile organic compounds (VOCs) has been extensively studied in the liquid phase, effective removal of VOCs in the gaseous state in indoor air remains a significant challenge. This study focuses on the continuous gas-phase oxidation of gaseous acetaldehyde using ZnO and different weight percentage of Fe-grafted ZnO catalysts under light irradiation.
View Article and Find Full Text PDFThe electrochemical degradation of air pollutants, particularly volatile organic compounds (VOCs), at their gaseous state is a promising method. However, it remains at an infant stage due to sluggish solid-gas electron transfers at room temperature. We established a triphase reaction condition using a semi-solid electrolyte layer between the electrode and membrane to enhance the electron transfer at room temperature.
View Article and Find Full Text PDF