The scarcity of human donor corneal graft tissue worldwide available for corneal transplantation necessitates the development of alternative therapeutic strategies for treating patients with corneal blindness. Corneal stromal stem cells (CSSCs) have the potential to address this global shortage by allowing a single donor cornea to treat multiple patients. To directly deliver CSSCs to corneal defects within an engineered biomatrix, we developed a UNIversal Orthogonal Network (UNION) collagen bioink that crosslinks with a bioorthogonal, covalent chemistry.
View Article and Find Full Text PDFCorneal defects can lead to stromal scarring and vision loss, which is currently only treatable with a cadaveric corneal transplant. Although -forming hydrogels have been shown to foster regeneration of the cornea in the setting of stromal defects, the cross-linking, biomechanical, and compositional parameters that optimize healing have not yet been established. This, Corneal defects are also almost universally inflamed, and their rapid closure without fibrosis are critical to preserving vision.
View Article and Find Full Text PDF-forming hydrogels are an attractive option for corneal regeneration, and the delivery of growth factors from such constructs have the potential to improve re-epithelialization and stromal remodeling. However, challenges persist in controlling the release of therapeutic molecules from hydrogels. Here, an -forming bio-orthogonally crosslinked hydrogel containing growth factors tethered photocleavable linkages (PC-HACol hydrogel) was developed to accelerate corneal regeneration.
View Article and Find Full Text PDFBioengineered corneal tissue is a promising therapeutic modality for the treatment of corneal blindness as a substitute for cadaveric graft tissue. In this study, we fabricated a collagen gel using ultraviolet-A (UV-A) light and riboflavin as a photosensitizer (PhotoCol-RB) as an -forming matrix to fill corneal wounds and create a cohesive interface between the crosslinked gel and adjacent collagen. The PhotoCol-RB gels supported corneal epithelialization and exhibited higher transparency compared to physically crosslinked collagen.
View Article and Find Full Text PDFPurpose: Millions worldwide suffer vision impairment or blindness from corneal injury, and there remains an urgent need for a more effective and accessible way to treat corneal defects. We have designed and characterized an in situ-forming semi-interpenetrating polymer network (SIPN) hydrogel using biomaterials widely used in ophthalmology and medicine.
Methods: The SIPN was formed by cross-linking collagen type I with bifunctional polyethylene glycol using N-hydroxysuccinimide ester chemistry in the presence of linear hyaluronic acid (HA).
To assess corneal inflammation from alkali chemical burns, we examined the therapeutic effects of -forming hyaluronic acid (HA) hydrogels crosslinked via blue light-induced thiol-ene reaction on a rat corneal alkali burn model. Animals were divided into three groups (n = 7 rats per group): untreated, treated with 0.1% HA eye drops, and treated with crosslinked HA hydrogels.
View Article and Find Full Text PDFBackground Aims: Corneal inflammation after alkali burns often results in vision loss due to corneal opacification and neovascularization. Mesenchymal stem cells (MSCs) and their secreted factors (secretome) have been studied for their anti-inflammatory and anti-angiogenic properties with encouraging results. However, topical instillation of MSCs or their secretome is often accompanied by issues related to delivery or rapid washout.
View Article and Find Full Text PDF